Summary: Indoor Routing of Robots & Metaheuristics

Navin Kashyap, Prabhasa K

In collaboration with Nokia Department of Electrical Communication Engineering Indian Institute of Science

27*th* July, 2018

Broad Classification - Routing and task planning

Vehicle Routing Problem (VRP): A combinatorial optimization and integer programming problem seeking to service a number of customers with a fleet of vehicles, while optimizing an objective subject to certain constraints

Figure: Networking and Emerging Optimization, University of Malaga

. (IISc) Summary: Indoor Routing of Robots & Metaheuristics 27*th* July, 2018 2 / 20 $\Box \rightarrow \neg \left(\frac{\partial}{\partial \theta} \right) \rightarrow \neg \left(\frac{\partial}{\partial \theta} \right) \rightarrow \neg \left(\frac{\partial}{\partial \theta} \right)$. . ogo

Insightful Reference Materials

Vehicle Routing Problem (VRP)

Variants:

- Capacitated VRP (CVRP) ✓
- Periodic VRP (PVRP) √
- Stochastic VRP (SVRP) √
- VRP with Time Windows (VRPTW) √
- VRP with Pick-Up and Delivery (VRPPD)
- Hybrid combinations of the above

Vehicle Routing Problem (VRP)

Variants:

- Capacitated VRP (CVRP) ✓
- Periodic VRP (PVRP) √
- Stochastic VRP (SVRP) √
- VRP with Time Windows (VRPTW) √
- VRP with Pick-Up and Delivery (VRPPD)
- Hybrid combinations of the above

Problem Objective(s)¹ **:**

Minimize **(i)** overall distance covered (ii) number of vehicles, (iii) waiting time, or $maximize (iv)$ profit (v) customer satisfaction

- Single Objective √
- Hierarchical Objectives
- Multi-criteria

Background

Choice of Constraints:

- Number of Depots √
- Demand vs Capacity of goods √
- Time Window and Scheduling √
- Locations known (offline) vs Dynamic/Stochastic (online) ✓
- Unpaired (either pickup or delivery) vs Paired (both, simultaneously)
- Degree and type of coordination between Vehicles Hoping to compare decentralized (with area partitioning) and centralized schemes

Background

Choice of Constraints:

- Number of Depots √
- Demand vs Capacity of goods ✓
- Time Window and Scheduling √
- Locations known (offline) vs Dynamic/Stochastic (online) ✓
- Unpaired (either pickup or delivery) vs Paired (both, simultaneously)
- Degree and type of coordination between Vehicles Hoping to compare decentralized (with area partitioning) and centralized schemes

Solution Methods:

- Heuristics √
- Metaheuristics √
	- Local search methods. Ex: Tabu, Greedy, Variable neighborhood search, Iterated local search, SA, Large neighborhood search
	- Population-based heuristics. Ex: ACO, MA, PSO, **GA**, Scatter search
- Hybrid Heuristics

Figure: Interactive Warehouse by Roodbergen. This can be used as a heuristic comparison tool for simple setups of variants like CVRP

1. CVRP: Prior Simulations

Metaheuristic: Genetic Algorithm (MATLAB and Python)

- Setting Offline, *Centralized*
- Objective Minimize total distance traversed by all vehicles
- Model 20*20 area, delivery nodes chosen at random
- Assumptions (i) Each vehicle has a capacity of 30 items (ii) Delivery demands may/may not vary with nodes
- Inputs Number of nodes, Number of vehicles, Min-max demand
- Outputs (i) Route taken, i.e. nodes covered by each vehicle (ii) Value of objective at each iteration (iii) Runtime

Algorithm-specific Parameters:

- $P(crossover) = 0.7$
- $\mathbb{P}(\text{mutation}) = 0.5$
- $P($ nearest neighbor $) = 0.5$
- Generations $= 500$ or 1000 (decides runtime)

Result: Objective Value

Figure: The 'fitness function' is the problem objective. In this case, it is the total distance traversed by all vehicles

Result: Graphical Representation

Generic notation for Vehicle Routing Problems

- $P \ldots$ set of backhauls or pickup nodes
- $D \ldots$ set of linehauls or delivery nodes
- $n \dots$ number of pickup nodes, indexed $i = 1, ..., n$
- \tilde{n} \cdots number of delivery nodes, in case of paired pickups
- and deliveries $n=\tilde{n},$ indexed $i=n+1,...,n+\tilde{n}$
- load at vertex i ; pickup nodes are associated with q_i ... ${\bf a}$ positive value, delivery nodes with a negative value
- $e_i \ldots$ earliest time to begin service at vertex i
- l_i \cdots latest time to begin service at vertex i
- $\overset{\circ}{d}_{i} \ldots \;$ service duration at vertex i
- L_i ... maximum ride time of user i $(i = 1, ..., n)$
- c_{ij}^k ... cost to traverse arc or edge (i, j) with vehicle k
- t_{ij} ... travel time from vertex *i* to vertex *j*
- $K \ldots$ set of vehicles
- $m...$ number of vehicles, indexed $k = 1,...,m$
-
- \overline{Q}^k ... capacity of vehicle k
 T^k ... maximum route duration of vehicle / route k

 $x_{ij}^k = \begin{cases} 1, & \text{if arc } (i,j) \text{ is traversed by vehicle } k \\ 0, & \text{else} \end{cases}$

- Q_i^k ... load of vehicle k when arriving at vertex i
- B_i^k ... beginning of service at vertex i

2. VRPTW: Problem Formulation

$$
\min \sum_{k \in K} \sum_{i \in V} \sum_{j \in V} c_{ij} x_{ij}^k
$$
\nsubject to:
\n
$$
\sum_{k \in K} \sum_{j \in V} x_{ij}^k = 1 \qquad \forall i \in V \setminus \{0, n + \tilde{n} + 1\}
$$
\n
$$
\sum_{j \in V} x_{i,n+\tilde{n}+1}^k = 1 \qquad \forall k \in K
$$
\n
$$
\sum_{i \in V} x_{i,j}^k - \sum_{i \in V} x_{ji}^k = 0 \qquad \forall j \in V \setminus \{0, n + \tilde{n} + 1\}, k \in K
$$
\n
$$
x_{ij}^k (B_i^k + d_i + t_{ij}) \le B_j^k \qquad \forall i \in V, j \in V, k \in K
$$
\n
$$
Q_j^k \ge (Q_i^k + q_i) x_{ij}^k \qquad \forall i \in V, j \in V, k \in K
$$
\n
$$
\max \{0, q_i\} \le Q_i^k \le \min \{\bar{Q}^k, \bar{Q}^k + q_i\} \qquad \forall i \in V, k \in K
$$
\n
$$
\sum_{j \in V} x_{ij}^k - \sum_{j \in V} x_{i,n+j}^k = 0 \qquad \forall i \in P, k \in K
$$
\n
$$
B_i^k \le B_{i+n}^k \qquad \forall i \in P, k \in K
$$
\n
$$
B_i^k \le B_{i+n}^k \qquad \forall i \in P, k \in K
$$

Illustration: A large-scale VRPTW simulation

3. Periodic VRP

PVRP - CVRP is generalized by extending the planning period to M days. Each customer must be visited k times, where $1 \leq k \leq M$

3. Periodic VRP

PVRP - CVRP is generalized by extending the planning period to M days. Each customer must be visited *k* times, where $1 \leq k \leq M$

- In the first level, the objective is to generate a group of feasible alternatives for each customer (Example below)
- \bullet In the second level, select one of the alternatives for each customer, so that the daily constraints are satisfied (i.e. we must select the customers to be visited in each day)
- . In the third level, we solve the CVRP for each day. In the example below, $M = 3$.

3. Periodic VRP

PVRP - CVRP is generalized by extending the planning period to M days. Each customer must be visited *k* times, where $1 \leq k \leq M$

- In the first level, the objective is to generate a group of feasible alternatives for each customer (Example below)
- \bullet In the second level, select one of the alternatives for each customer, so that the daily constraints are satisfied (i.e. we must select the customers to be visited in each day)
- . In the third level, we solve the CVRP for each day. In the example below, $M = 3$.

 $\overline{\Omega}$

4. Stochastic VRP

SVRP - VRPs where one or several components of the problem are random

- As some data are random, it is no longer possible to require that all constraints be satisfied for all realizations of the random variables.
- A first solution is determined before knowing the realizations of the random variables. In a second stage, a recourse or corrective action can be taken when the values of the random variables are known.

5. VRPPD: Work in Progress

Figure: Classification of VRPPD²

 2 A survey on pickup and delivery models Part II: Transportation between pickup and deli<u>v</u>ery loca<u>ti</u>ons, Pāragh et āl., 2006 (\sim (IISc) Summary: Indoor Routing of Robots & Metal 27th July, 2018 15 / 20

Final Objective

What would NOKIA like to see/use it for:

- Facility management Office pickup and delivery of items by Sodexo. No fixed geometry, hence can look at *online, decentralized* **SVRPPDTW** approaches
- Logistics transportation Warehouse setup with some local cloud computing power. Fixed, aisle-like known paths, hence can look at *offline, centralized*, **PVRPPD(TW)** scheme

Final Objective

What would NOKIA like to see/use it for:

- Facility management Office pickup and delivery of items by Sodexo. No fixed geometry, hence can look at *online, decentralized* **SVRPPDTW** approaches
- Logistics transportation Warehouse setup with some local cloud computing power. Fixed, aisle-like known paths, hence can look at *offline, centralized*, **PVRPPD(TW)** scheme

What more can we bring to the table:

- Compare varying degree of vehicular decision making power (centralized vs decentralized) for the problems
- Employ **online learning** for existing metaheuristic techniques, i.e. based on timely feedback, employ a reward-based scheme and incentivize the decisions taken.
- For a given objective, how will a proposed learning scheme perform against expert/popular metaheuristic algorithms?

So far: An update

- **Solving through Metaheuristics:** (Constraints Variant Status)
	- 3/4 VRPPD Working on code
	- 5/6 VRPPDTW Hybrid
	- 6/7 SVRPPDTW/PVRPPDTW Hybrid
	- 9/10 SVRPPDTW/PVRPPDTW for a *'Grid-with-isles'* setting

So far: An update

- **Solving through Metaheuristics:** (Constraints Variant Status)
	- 3/4 VRPPD Working on code
	- 5/6 VRPPDTW Hybrid
	- 6/7 SVRPPDTW/PVRPPDTW Hybrid
	- 9/10 SVRPPDTW/PVRPPDTW for a *'Grid-with-isles'* setting

Interesting industry resources:

- Market Vendors for VRP here
- Global Optimization Softwares that are publicly available here (might be helpful for online setting)

So far: An update

- **Solving through Metaheuristics:** (Constraints Variant Status)
	- 3/4 VRPPD Working on code
	- 5/6 VRPPDTW Hybrid
	- 6/7 SVRPPDTW/PVRPPDTW Hybrid
	- 9/10 SVRPPDTW/PVRPPDTW for a *'Grid-with-isles'* setting

Interesting industry resources:

- Market Vendors for VRP here
- Global Optimization Softwares that are publicly available here (might be helpful for online setting)

Some more helpful online tools:

- Gurobi an MIP solver for Python
- DEAP A Metaheuristic solver for Python
- GEATbx A Metaheuristic solver for MATLAB

Concluding remarks

Explored methods:

- Internet Software Tools VRP solvers and Commercial Software
- Programming platforms MATLAB, Python
- Internet Resources GITHUB, VRP Literature

Concluding remarks

Explored methods:

- Internet Software Tools VRP solvers and Commercial Software
- Programming platforms MATLAB, Python
- Internet Resources GITHUB, VRP Literature

Future Work:

- Use hybrid heuristics to solve the mixed-IPPs (atleast a relaxed version) of VRP flavors that we have narrowed down on
- Compare the results with current literature, or with Interactive tools
- Understand and simulate the online and decentralized setting

Timeline

- **Dec** Possible problem statements (Task planning, Path planning)
- **Jan** An insight into the Vehicle Routing Problem and variants
- **Feb** Survey of available Metaheuristics
- **Mar** Solving the simplest two-constraint variant (CVRP)
- **Apr** Python implementation of CVRP
- **May** VRPTW
- **July** PVRP and SVRP

