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ABSTRACT

As robots and other intelligent agents move from simple environments to more complex, un-

structured settings, modern deep reinforcement learning (RL) systems require an exponentially

increasing number of samples for learning. This sample-inefficiency is not practical, especially for

many real-world tasks when environment samples and compute are expensive. One way to address

these limitations is to use sample-efficient methods like imitation learning (IL), that leverage hu-

man demonstrations to generate the desired behavior. IL has proven to be effective in problems

with singular tasks, especially on tasks related to robotic manipulation and autonomous vehicles.

This Thesis applies existing state-of-the-art IL techniques to learn desired behaviors in two

complex, sparsely-rewarded, simulated real-world systems: Unmanned Aerial Vehicles (UAVs)

and video games. Specifically, we study the sample-efficiency and imitation accuracy of Gener-

ative Adversarial Imitation Learning and Deep Q-learning from Demonstrations on the two tasks

respectively, as opposed to learning behavior purely from RL.

Current control systems do not capture the intuition and decision-making skills behind a pilot’s

maneuver, which can be crucial for landing under uncertainties. We design a novel method of

sample-efficient autonomous UAV maneuver & landing using Microsoft AirSim as an environment

simulator. The second application, motivated by the MineRL competition, involves learning to

solve tasks like chopping trees and obtaining a diamond on Minecraft, using Microsoft Malmo

as the environment simulator. For the problem of autonomous UAV maneuver & landing, we

demonstrate sample-efficient imitation and comment on the need for ‘smooth’ experts for learning

optimal landings. We show improved performance on pairing RL methods with demonstrations,

over RL methods alone, for the problem of learning to chop trees on Minecraft. Further, we discuss

design choices and potential bottlenecks from using the simulators and attempt to address them.
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1. INTRODUCTION

1.1 Background

1.1.1 Machine Learning

Machine Learning (ML) deals with the study of algorithms used to find patterns in data. Over

the last few decades, ML has seen a tremendous growth particularly due to the success of deep

learning algorithms. Deep learning is a branch of ML that uses neural networks to represent and

identify complex patterns in data.

The field of ML can be broadly classified into three parts: supervised learning, unsupervised

learning, and reinforcement learning. Supervised learning uses labeled data to learn patterns in

data, e.g. algorithms that classify images as either a cat or a dog. Unsupervised learning attempts

to discover patterns in unlabelled data, e.g. algorithms that cluster data based on their similarities.

Reinforcement learning involves algorithms learning to take actions that maximize the notion of a

cumulative reward of an environment, e.g. playing video games to maximize score.

Recent advances in hardware and hence compute have led to a massive growth in deep learn-

ing applications to academia and industry. This includes domains such as robotics, autonomous

systems, biotechnology, natural language processing, computer vision, and lately, reinforcement

learning.

1.1.2 Reinforcement Learning

Consider an agent continually interacting with an environment as shown in Figure 1.1, say a

self-driving car passing through an intersection. The agent takes an action in the environment, say

the car accelerates. It observes the environment at the current point in time, which is the state of

the system and receives a positive or negative reinforcement signal from the environment, which

we call the reward. In the case of the car, the system may penalize the car for getting too close

to a pedestrian, or give a positive reward for speeding up, so the pedestrian can cross quickly on

the car’s passing. The car responds to the environment’s feedback by taking appropriate action to
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transition to a new state, like braking if it received a negative reward or continuing to accelerate if

it received a positive reward. This repeated process of the agent taking an action and observing a

new state and reward can be considered performing a task in the system, with reaching a certain

goal in mind. Intuitively, the goal is associated with the maximum reward, and thus our objective

is to maximize the reward obtained over the duration of the task.

Figure 1.1: Reinforcement Learning: A primer.

More formally, let S,A be the collection of all possible states and actions for the task and

consider s, s′ ∈ S, a ∈ A. The transition of the system from the state s to a new state s′ may

be explained by a system model, represented as a transition probability P (s′|s, a). Let H be the

horizon of the task. The rewards R(s, a) received over time can be scaled by a discount factor

γ ∈ [0, 1], signifying the importance of future rewards over immediate rewards. Define a mapping

π : S → A, which we will call the policy of the task.

The tuple [S,A, P (s′|s, a), R(s, a), γ,H], called a Markov Decision Process (MDP), represents

the framework of learning from interaction to achieve a goal. The objective is to obtain an optimal

policy π∗ that maximizes the quantity
∑∞

t=0 γtRt, whereRt = R(st, π(st)). In the case of unknown

dynamics P , this problem is known as Reinforcement Learning (RL). The class of algorithms

that use a neural network to represent the policy fall under deep-RL.
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1.2 Problem

1.2.1 Need for Sample-Efficiency

With an increase in problem complexity, deep-RL methods require a larger number of samples

for training. Recent successes in Artificial Intelligence (AI) such as AlphaGoZero (4.9 million

games of self-play) [1], OpenAI Five (11,000+ years of Dota 2 gameplay) [2], and AlphaStar

(200 years of Starcraft II gameplay) [5] use deep-RL to achieve human or super-human level

performance in sequential decision-making tasks. As shown in Figures 1.2 and 1.3, these tasks take

massive amounts of training samples and compute. Several real-world applications such as self-

driving vehicles and video games are affected by the sample requirements of such RL algorithms.

This is not practical, especially when environment samples are expensive and compute is limited.

It is also particularly challenging for the AI community to reproduce state-of-the-art results.

Figure 1.2: AlphaGo Zero: Learning to play Go. Reprinted from [1].

Figure 1.3: OpenAI Five: Learning to play Dota. Reprinted from [2].
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1.2.2 Reward Design

Figure 1.4: Rewards in computer games. Figure 1.5: A self-driving car at an intersection.

Reinforcement Learning (RL) has been very successful in domains such as computer games.

However, a key limitation of RL algorithms is that it involves the optimization of a predefined

reward function or reinforcement signal [6–12], which, in the case of computer games, is to max-

imize the score as shown in Figure 1.4. However, there is no explicit reward function associated

with many real-world tasks such as driving and robotic manipulation. Consider the example from

earlier of a self-driving car passing through an intersection, as shown in Figure 1.5. Depending on

the objective, there can be many reward functions for the task:

• Positive reward for slowing down at intersections to let the pedestrian cross first

• Positive/negative reward for speeding up, so the pedestrian can cross later

• Penalty for getting too close to the pedestrian

It is not obvious what the ‘right’ reward function is, and how we should weigh between the

different components. Typically, we use a proxy reward function that does exactly that. However,

manually designing such a reward function may lead to counter-intuitive behaviors [13].

It is often easier for humans to demonstrate a desired behavior for the task than try to manually

engineer it, say, by careful design of reward functions. This need for sample-efficiency and for

avoiding counter-intuitive behaviors resulting from manual reward function design motivates the

problem of learning from readily available example expert behavior.
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1.2.3 Imitation Learning

One approach to address the two issues is to use sample-efficient methods like imitation learn-

ing, that learn purely from demonstrations. Imitation learning (IL) is the study of techniques that

learn from expert demonstrations, which are typically a collection of (state, action) pairs. IL meth-

ods have succeeded in addressing these issues in a wide range of problems [14–17], and have

shown to be effective on tasks related to robotic manipulation and autonomous vehicles. For this

thesis, we will apply (i) the state-of-the-art IL algorithm: Generative Adversarial Imitation Learn-

ing (GAIL) [3], and (ii) an algorithm that pairs RL with expert demonstrations: Deep Q-learning

from Demonstrations (DQfD) [18] to two real-world tasks respectively.

For better understanding, figure 1.6 and Figure 1.7 roughly illustrate the difference between

Reinforcement Learning (RL) and Imitation Learning (IL) techniques for learning.

Figure 1.6: Reinforcement Learning.

In RL (the case where system dynamics P is unknown), we obtain a policy that maximizes a

given reward function for the task. To verify learning, we look at two performance metrics:

1. Evaluate the resulting policy and check if the policy can obtain the desired reward

2. The convergence of the policy reward to the desired reward, over the training phase. This is

more of a sanity check but acts as a first pass to verify learning
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Figure 1.7: Imitation Learning.

In IL, we typically obtain a reward that explains the given expert demonstrations. To evaluate

the reward, we typically obtain a policy that maximizes this predicted reward. To verify imitation,

we look at the same performance metrics as RL. However, this requires the construction of a proxy

reward function if it is explicitly not available, as is the case for many real-world tasks.

The remainder of this thesis is structured as follows - we motivate our choice of GAIL as the

IL algorithm in section 2. In section 3, we will study the imitation accuracy and sample-efficiency

of GAIL with the help of a popular control task. We then apply GAIL to the task of autonomous

Unmanned Aerial Vehicle (UAV) maneuver and landing in section 4. For performing tasks in

Minecraft in section 5, we demonstrate the benefits of using RL with demonstration data, as op-

posed to just RL. Finally, in section 6, we summarize the conclusions drawn from our experiments

and discuss possible improvements and extensions to the applications.
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2. LITERATURE REVIEW

Our goal is to learn expert behavior using as few demonstrations as possible, which is the

goal of sample-efficient learning. In this section, we discuss some popular imitation learning (IL)

methods and motivate our choice of Generative Adversarial Imitation Learning (GAIL).

2.1 Early Approaches to Imitation Learning

One of the earliest attempts at learning behavior aimed at purely ‘mimicking’ expert action,

without worry about the expert dynamics. This approach later termed Behavioural Cloning (BC),

focuses on learning the expert’s behavior as a supervised learning problem. However, BC does

not generalize well and can run into failures due to compounding errors. Direct Policy Learn-

ing improves on BC by assuming access to an expert and knowledge of system dynamics during

training. However, these assumptions are not practical for many real-world applications such as

self-driving vehicles and playing video games. Abbeel and Ng [14] later introduced apprenticeship

learning, also known as Inverse reinforcement learning (IRL), which recovers a reward function

for the task to learn behavior. However, this is an under-defined problem, as there may be many

reward functions that can explain expert behavior. We would thus like to recover a unique reward

function.

Figure 2.1: Inverse Reinforcement Learning.
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The modified block diagram of IL from Section 1, shown above in Figure 2.1, is IRL. The

dotted arrow describes the problem of learning purely from expert demonstrations, without access

to the expert (crossed). We will also assume that we do not have access to the dynamics of the

system, which is the case in most real-world tasks.

Ziebart et al. [15] proposed a maximum entropy principle for IRL, which assigns a probability

distribution for sampling the expert demonstrations. That is, demonstrations with higher rewards

are more likely to be sampled, and this prior assumption helps recover a unique reward func-

tion. However, evaluating the recovered reward in IRL still requires running RL after each update,

which is a large overhead. Rewriting the flowchart from earlier as a complete imitation learning

framework of IRL, we have Figure 2.2.

Figure 2.2: Imitation Learning via IRL.

2.2 Generative Adversarial Imitation Learning

Our objective is to extract expert behavior from demonstrations. That is, we would like to

recover the expert policy. Recovering the reward as an intermediate step is somewhat of an over-

head. Ho and Ermon [3] proposed Generative Adversarial Imitation Learning (GAIL) that directly

recovers a policy from expert demonstrations, "as if it were obtained by RL following IRL."

GAIL is a model-free IL algorithm that directly learns a policy from expert behavior, without

any access to a reinforcement signal or expert feedback. The training process of GAIL can be

thought of as building a generative model, whose goal is to generate behaviors similar to the expert

rollouts, which are a collection of (state, action) pairs. It does this by evaluating its stochastic

policy on a fixed simulation environment.
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Imitation is achieved by jointly training a discriminator to distinguish expert trajectories from

ones produced by the learned policy, just as in GANs [19]. GAIL can be seen as optimizing max-

entropy IRL with a special form of discriminator network, which is the same as optimizing the

discriminator in GANs. If the generator network fools the discriminator into thinking the rollouts

came from the expert, then we say GAIL has learned to imitate the expert.

Figure 2.3: Generative Adversarial Imitation Learning.

The authors show that GAIL can imitate complex behaviors in large, high-dimensional envi-

ronments, which is our motivation behind applying it to real-world tasks like autonomous UAV

landing. Using the IRL framework from earlier, GAIL can be roughly seen as the black box shown

in Figure 2.3. The algorithm is as shown in Figure 2.4 below.

Some additional pointers on GAIL:

• Trust Region Policy Optimizer [8] (TRPO) is used as the policy optimizer

• If there is an available/proxy reward function, this can be included as part of the demonstra-

tions in order to use reward convergence as a performance metric

9



Figure 2.4: Generative Adversarial Imitation Learning. Reprinted from [3].

To summarize the imitation learning methods as shown in Figure 2.5, GAIL is the state-of-the-

art IL algorithm that addresses several challenges faced by earlier methods. We will use GAIL to

demonstrate the sample-efficiency of imitation learning, by learning behaviors purely from demon-

stration data of a real-world task.

Figure 2.5: Imitation Learning methods: a summary.
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3. PROBLEM SETUP

Our goal is to extract a policy (learn behavior) purely from demonstration data of a task. De-

pending on the availability of expert demonstrations, we train IL algorithms (GAIL) on demon-

strations of the task as follows:

1. Expert data available: Sample expert -> Train GAIL -> Evaluate policy

2. Expert data unavailable: Train RL on available / proxy reward function -> Rollout experts

-> follow step 1

3.1 Performance Metrics

Expected outcome: GAIL should be able to learn the expert policy, for both optimal and

suboptimal experts. We call the learned policy a “successful imitation” of the expert if the statistics

for the two are similar, The similarity is quantified using the two performance metrics mentioned

in Section 1. Listed below are some keywords related to learning the expert policy:

1. Expert rollouts: Generate 100 trajectories of performing the task and sample [5, 10, 20]

trajectories to train GAIL on. The expert trajectories may be optimal or suboptimal.

2. Policy evaluation: Generate rollouts from the learned policy for 100 episodes, and check if

it solves the task

3. Task solved: Learned policy achieves true reward for 100 consecutive episodes of training

4. Successful imitation: If the reward statistics from policy evaluation match that of expert

rollouts

We will mostly use two performance metrics to check for imitation:

1. Reward convergence: mean cumulative episode reward vs episodes / env interactions

2. Policy evaluation: demonstrations used vs (mean, std) episode reward
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3.1.1 Tools Used

• RL Library: Stable Baselines 2.10 [20]

• Framework: TensorFlow 1.14

• Hyperparameters (HPs): RL Baselines Zoo [21]

• Performance metrics: Tensorboard 1.14, W&B 0.10 [22]

For our experiments, we will borrow the implementation of RL algorithms, BC, and GAIL

from Stable Baselines 2.10. We will make use of tuned hyperparameters (HPs) available on RL

Baselines Zoo [21] for experiments on the case studies and the first application. Note that this

thesis will only list the HPs borrowed from Zoo, and all other HP values are the default values

found on Stable Baselines 2.10.

We also use some features and techniques such as multiprocessing for speed-up, data normal-

ization for high-dimensional tasks, and periodic policy evaluation to monitor performance during

training. We will not divulge into the details, but using these features resulted in a significant boost

in time and performance in many experiments.

3.1.2 Interesting Questions

To understand the policy (behavior) learned by GAIL, we will use popular control tasks from

OpenAI Gym. These simulated tasks do not have readily available expert data, and we will use

Soft Actor-Critic (SAC) [12], an RL algorithm, to learn an optimal policy, from which we rollout

experts. GAIL can then be trained on the expert rollouts to learn a policy (behavior), from which

we will try to answer the following questions:

1. How does imitation accuracy scale with problem dimensionality (complexity) and demon-

stration data (sample-efficiency)?

2. How ‘smooth’ are the learned policies compared to the expert policy?

3. Can sparse rewards be learned? At what cost?

4. Can GAIL imitate suboptimal experts?
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3.2 OpenAI Gym and MuJoCo

OpenAI Gym [23] is a “Toolkit for developing and comparing reinforcement learning algo-

rithms.” It is a platform for teaching agents to perform simulated tasks under a true reward. This

means that expert demonstrations can be generated for these tasks by training SAC can on the true

reward. Some classes of tasks on Gym are Atari games, robotic manipulation, and classic control

tasks such as balancing a pendulum and a cart pole upright.

MuJoCo [24] is “a physics engine that does very detailed, efficient simulations with contacts.”

This includes several 2D and 3D continuous control tasks such as hopping, walking, and running.

These platforms are used as standard benchmark tasks for testing RL, IL algorithms in the litera-

ture.

We will use control tasks from these platforms to draw conclusions about GAIL’s imitation

accuracy and sample-efficiency. We will later notice similarities between our applications and a

control task, which can be used to explain behavior learned for one of our applications. Table 3.1

lists some common hyperparameters used for GAIL throughout the thesis.
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(a) Pendulum-v0. (b) CartPole-v1.

(c) LunarLander-v2. (d) Hopper-v2.

Figure 3.1: Control tasks from OpenAI Gym and MuJoCo.

GAIL Hyperparameters Value

Policy (both Disc & Gen) ’MlpPolicy’

Discriminator NN architecture [100, 100]

Generator NN architecture [100, 100]

Activation, initial weights Tanh, 1

Optimizer Adam, learning rate 3× 10−4

Loss function: Discriminator Binary Cross-Entropy (BCE)

Batch size 64

Table 3.1: GAIL hyperparameters common throughout the thesis.
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3.3 Case Study: GAIL on Pendulum-v0

To analyze the imitation accuracy and sample-efficiency of GAIL, we consider the OpenAI

Gym control task of keeping an inverted pendulum upright (Pendulum-v0). The details of the

environment are listed below in Table 3.2:

Properties Description

State space (cts, dim=3) Cosine, sine of angle θ [−1, 1], θ0 [−8, 8]

Action space (cts, dim=1) Joint effort [-2, 2]

Reward - (θ2 + 0.1× θ20 + 0.001× action2)

Termination 200 steps

Solved criteria No solved criteria. Defined as -200

Expert trajectories used [5, 10, 20] randomly sampled from 100 demonstrations

Table 3.2: The Pendulum-v0 environment.

We run SAC on the true reward for the task and rollout experts from the resulting policy. We

sample [5, 10, 20] expert trajectories from the rollouts and run GAIL. The hyperparameters (from

RL Zoo) used for both SAC and GAIL are listed in Table 3.3. We use two performance metrics to

check for imitation:

1. Reward convergence: if the expert is optimal, cumulative reward converges

2. Policy evaluation: episode statistics must match that of the expert. Statistics include reward

(mean, variance) and episode length (mean, variance)

Fig. 3.2 shows GAIL’s reward over training, on different sample sizes of the expert. We observe

that the mean reward has converged to the true reward (-200), and conclude that GAIL learned the

Pendulum-v0 task. However, this does not guarantee imitation of the expert.
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Algorithm Hyperparameters Value

SAC env interactions 6× 104

policy ’MlpPolicy’

learning starts 1000

GAIL env interactions 3× 105

policy ’MlpPolicy’

max KL 0.000193

timesteps per batch 1024

gamma 0.99

lambda (GAE) 0.98

entropy coefficient 0.01118

cg damping 2.35× 10−5

value function iterations 10

value function stepsize 0.00428

Table 3.3: Hyperparameters for SAC and GAIL on Pendulum-v0.

Figure 3.2: GAIL on Pendulum-v0: Reward convergence over training
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Fig. 3.3 shows the policy evaluation of the trained GAIL, BC models for different numbers of

expert demos. The dashed lines represent the true reward of the task, and GAIL’s policy evaluation

corroborates the reward convergence. The dotted line represents expert statistics. It is interesting to

note that the learned policy’s performance is not only consistent over the number of demonstrations

but also matches that of the expert. That is, GAIL needs only 5 demonstrations to learn to perform

the task just like the expert and performs similar to learning from 10 or 20 demonstrations. GAIL

can imitate the Pendulum-v0 expert behavior while being sample-efficient.

(a) Episode reward (mean). (b) Episode reward (std).

Figure 3.3: GAIL on Pendulum-v0: policy evaluation, with episode reward (mean, std). Dashed
line shows the true reward, dotted lines show the expert rollout statistics

Note that the performance of Behavioral Cloning improves with demo data, but takes more

than 20 demonstrations to imitate expert performance. More importantly, this improvement is only

observed on using optimal experts and fails when suboptimal experts are used. Meanwhile, GAIL

is also able to successfully imitate suboptimal experts, as shown on the CartPole-v1 task below

in Table 3.4. This gap in performance between BC and GAIL only widens with task complexity,

hence we will not use BC as a comparison algorithm for our applications.
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Data Optimal Reward Length Success rate

Expert rollouts No (402, 134) 402 63/100

Learned policy No (410, 178) 411 59/100

Table 3.4: GAIL on 10 suboptimal CartPole-v1 rollouts: policy evaluation.

The reward convergence and policy evaluation of the learned policies showed “successful imi-

tation” of the expert. Let us now answer the questions from before:

1. How does imitation accuracy scale with problem dimensionality and demo data? GAIL is

sample-efficient on low-dimensional control tasks, BC is not

2. How ‘smooth’ are the learned policies compared to expert policy? smooth if the episode

reward (std) on policy evaluation matches the episode reward (std) of expert rollouts

3. Can sparse rewards be learned? At what cost? (we only looked at tasks with dense rewards)

4. Can GAIL imitate suboptimal experts? For low-dimensional control tasks, yes

To summarize, GAIL successfully imitates two low-dimensional control tasks, in the case of

both optimal and suboptimal experts. With this background, we look at the problem of autonomous

UAV maneuver and landing, a more complex, sparsely-rewarded task. We will try to answer the

same set of questions, and analyze GAIL’s imitation accuracy and sample-efficiency on the task.
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4. APPLICATION: AUTONOMOUS UAV MANEUVER & LANDING

This application was inspired by the procedure that Navy pilots typically follow for landing

on space-constrained ship decks. As shown in Figure 4.1, landing a helicopter on a moving ship

is a hard problem and requires more skill than landing on solid ground. It is hard for the pilot to

physically see the landing pad, and pilots typically refer to a gyro-stabilized horizon reference bar

(a visual cue) for approaching the ship deck [25, 26], as shown in Figure 4.2.

Figure 4.1: Comparing helicopter landing on the ground and a ship.

Figure 4.2: Gyro-stabilized reference bar used for approach and landing.
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(a) Landing pad from [27] (b) Capturing images from [28]

Figure 4.3: Vision-based autonomous landing techniques

Current autonomous systems employ vision-based methods for landing [27, 28], where the

landing pad position and heading are captured using an on-board camera from the helicopter, as

shown in Figures 4.3a and 4.3b. However, these control systems do not capture the pilot’s intuition

and decision-making skills, which is critical for handling uncertain scenarios. Human demonstra-

tions are readily available for approach and landing based on the visual cue. This work proposes

an imitation learning-based approach for autonomous Vertical Take-Off and Landing (VTOL) of

Unmanned Aerial Vehicles (UAVs). Our contributions are threefold:

• Landing a UAV on a ship without looking at landing spot (in simulation)

• Referring to a visual cue for maneuver and positioning

• Bring pilot’s intuition and flying skills with imitation learning

4.1 Environment Simulator

To simulate the problem of autonomous VOTL UAV landing, we will need to fly a UAV in a

high-fidelity simulator environment. For this work, we choose Microsoft AirSim 2.0 [29]. It is an

open-source, cross-platform simulator built on Unreal Engine [30].

4.1.1 Setting up The Simulator

AirSim has a multirotor vehicle that can be used as a UAV. For our experiments, we design a

custom ship environment that reflects a standard ship deck, as seen in Figure 4.4 and Figure 4.5:

1. Drone: spawns at a random position within a bounding box, around the drone’s origin

2. Landing pad (4m x 4m): 10 meters away from the drone in the forward direction
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3. Visual cue: A green bar 13.5m away and 1.3m high from the drone in the forward direction

Figure 4.4: AirSim setup: front view.

Figure 4.5: AirSim setup: side view.
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Properties Description

State space (cts, dim=6) Drone position, velocity (X, Y, Z). Goal: 4x4 square

Position: X [0, 17], Y [-2, 2], Z [-5, 0] – negative Z upwards

Velocity: X [-1, 3], Y [-1, 1], Z [-4, 4]

Action space (cts, dim=3) [Pitch (rad), Roll (rad), Throttle (0, 1)]. Yaw zero

Termination Timeout, out of bounds, below visual cue, crash, land

Solved criteria A proxy reward of 1000

Expert trajectories used [5, 10, 20, 50, 100] randomly sampled from demonstrations

Table 4.1: The AirSim-v0 environment.

Table 4.1 lists the properties of the custom AirSim-v0 Gym environment. The drone’s position

and velocity constitute the state of the environment, and the drone’s pitch, roll, and throttle are the

actions that can be taken by the drone to reach a new state in the environment. Our goal is to learn

a policy that performs the same maneuvers as the expert.

There are several factors for terminating the episode, including a timeout criteria. This timeout

depends on the length of the expert demonstrations, and for purposes of generalizing, will not as-

sume a timeout criteria for the moment, resulting in a variable-length horizon task. We note that

there exists a similar OpenAI Gym control task without a timeout criteria (LunarLanderContinuous-

v2), whose objective is also to land a rover on the ground.

4.1.2 Collecting Expert Demonstrations

AirSim can also integrate a variety of flight controllers. This feature can be used for collecting

expert demonstrations. We calibrate a Taranis x9d flight controller shown in Figure 4.7, which

allows the expert to map the joystick and enable/disable specific controls. To avoid any increase

in problem dimensionality, we disable the yaw and focus only on the pitch, roll, and throttle of the

drone. The maneuver to be made is as shown in Figure 4.6, where the drone refers to the visual
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cue for approach and is then allowed to fall below the visual cue for landing.

Figure 4.6: Intended maneuver by the expert. Figure 4.7: Flight controller: collecting demos.

To quantify the expert data as optimal or suboptimal, and later quantify successful imitation,

we design a proxy reward for the trajectories based on the following rule:

• Increase reward as it gets close to landing pad (1/x)

• A reward of +1000 on reaching the landing pad

• -10 for falling below visual cue before reaching pad, going out of bounds (termination)

The reward to be achieved for solving the task is 1000. Note that this is a sparsely-rewarded

task, as there is a large positive reward for the goal state, which is roughly 105 times larger than

the small reward received at all other states in the environment.

We use the flight controller to generate sets of 120 optimal and 140 suboptimal expert demon-

strations, shown in Figure 4.8 and Figure 4.9 respectively. The demonstrations follow the Stable

Baselines requirements and constitute five components: (states, actions, rewards, returns, episode

start). The state includes the drone’s position and velocity, the actions include pitch, roll, and

throttle. A video of the human expert recording the demonstrations can be seen here.

As mentioned in Section 2, rewards can be included in the expert demonstrations, in order to

be able to use reward convergence as a performance metric. The reward also helps classify the

expert as optimal or suboptimal, based on the reward needed to solve the task. Table 4.2 lists

the statistics of the two experts. Based on the reward statistics, we observe that the second set of
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demonstrations is suboptimal due to its large variance in reward, which is visible on rendering the

demonstrations. Note that the landing pad for the two sets of experts is centered at (10, 0, 0) and

(15, 0, 0) respectively.

Figure 4.8: Optimal expert demos. Figure 4.9: Suboptimal expert demos.

Quantity Optimal Suboptimal

Optimal Yes No

Solved 120/120 132/140

Expert score (mean) 1141 1116

Expert score (std) 27 284

Expert length 362 307

Table 4.2: Human expert demonstrations - statistics.
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To summarize, we train GAIL on the collected expert demonstrations and interact with the

AirSim-v0 environment to learn the task of approach and landing. The reward needed to solve the

task is 1000. For the experiments, we use the set of HPs available for the LunarLanderContinuous-

v2 environment on RL Zoo, which we will not explicitly mention here. We observe that on using 5,

10 demonstrations GAIL is unable to solve the task, likely due to lack of data. We will thus use 20,

50, and 100 demonstrations for learning the maneuvers. A rendering of the expert demonstrations

and training process can be seen here (links: expert demos, training phase - front view).

4.2 Results

The goal is to extract the expert’s policy (learn maneuvers) by training GAIL on expert samples

of size [20, 50, 100] from both optimal and suboptimal demonstrations. On using 20 or more

optimal demonstrations, GAIL learned to approach the landing pad. However, it learned to hover

over the landing pad until termination instead of landing, as shown in the video here. This could be

due to the cumulative non-zero rewards received above the landing pad, which may be comparable

to the goal state reward. To justify this behavior, we look at the Lunar Lander control task from

Gym.

4.2.1 Case Study: GAIL on LunarLanderContinuous-v2

The LunarLanderContinuous-v2 environment is as described in Table 4.3, which is quite sim-

ilar to AirSim-v0. There is also no explicit termination criteria other than the goal state, which is

our motivation for the case study.

Figure 4.10 shows the policy evaluation of the trained GAIL, BC models for different numbers

of optimal demonstrations. The dashed lines represent the true reward of the task, and the dotted

line represents the expert statistics. GAIL learns to solve the task for all pairs of demonstration

data and also learns to imitate the LunarLanderContinuous-v2 expert behavior while being sample-

efficient (more than 10 demonstrations).
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Properties Description

State space (cts, dim=6) Lander position, velocity, angle & angular speed, leg contact

and (disc, dim=2) Position: X [-1, 1], Y [0, 1.4]. Goal: b/w flags at [-0.2, 0.2]

Velocity: typically [-1, 1]. Angle [-0.4, 0.4] in radians

Action space (cts, dim=3) Engine throttle [main engine, left-right engines]

Reward 1. Lander crashes or comes to rest: -100 or +100

2. Each leg ground contact is +10

3. Firing the main engine is -0.3 points each frame

Termination Land (+100) or crash (-100), no termination

Solved criteria Mean reward 200 over 100 consecutive episodes

Expert trajectories used [5, 10, 20] randomly sampled from 100 demonstrations

Table 4.3: The LunarLanderContinuous-v2 environment.

(a) Episode reward (mean). (b) Episode reward (std).

Figure 4.10: GAIL on LunarLanderContinuous-v2: policy evaluation, with episode reward (mean,
std). Dashed line shows true reward, dotted lines show expert rollout statistics
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However, if we are to look at the episode length of the learned policy in comparison to the

expert, there is a large difference between the two. Figure 4.11 shows the expert length statistics

in dotted lines, clearly indicating that the learned policy learns longer episodes. On rendering, we

learn that the learned policy lands the rover on the ground, but keeps one of its engines turned on to

achieve a higher reward. That is, GAIL learns to exploit the long horizon of the task to improve

the score to match the expert’s score. This confirms our suspicion that the learned policy hovers

above the landing pad to improve its score.

(a) Episode length (mean). (b) Episode length (std).

Figure 4.11: GAIL on LunarLanderContinuous-v2: policy evaluation, with episode length (mean,
std). Dotted lines show the expert rollout statistics

4.2.2 GAIL on Optimal Expert

For the remainder of the results, we choose to fix the problem horizon as the mean length

of the expert demonstrations, which is 400. Figure 4.12 shows the average reward convergence

of GAIL on using 20, 50, 100 optimal demonstrations. Although it falls short of the true reward

represented by the dashed lines, it learns a policy similar to that of the optimal expert, as shown in

Table 4.4. Figure 4.13b shows the maneuvers performed by the learned policy, as compared to the

optimal expert shown in Figure 4.13a. GAIL learns an “average” behavior of the optimal expert.
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Data Optimal Reward Length Success rate

Expert rollouts Yes (1141. 27) 362 120 / 120

Learned policy Yes (1048, 292) 80 84 / 100

Table 4.4: GAIL on 20 optimal AirSim-v0 rollouts: policy evaluation.

Figure 4.12: GAIL on optimal AirSim-v0 expert: reward convergence.

On careful look at rollouts from the learned policy as shown in the video here, we see that

although the approach is similar to the expert, the landing is not perfect. The optimal expert

performed hard landings, whereas the learned policy landings are smoother and sometimes land

outside the landing pad. This results in reduced performance. We will address this issue in detail

later.
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(a) Optimal expert. (b) Learned policy.

Figure 4.13: Optimal expert rollouts vs learned policy rollouts.

4.2.3 GAIL on Suboptimal Expert

Figure 4.14 shows the average reward convergence of GAIL on using 20, 50, 100 suboptimal

demonstrations. Although it falls short of the true reward represented by the dashed lines, it learns

to approach the landing pad as seen in the video here. Table 4.5 compares the performance of the

learned policy with the suboptimal expert. Figure 4.15b shows the maneuvers performed by the

learned policy, as compared to the optimal expert shown in Figure 4.15a. GAIL learns an “average”

behavior of the approach, but the lack of learning to land is likely due to the large variance in the

demonstration data.
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Data Optimal Reward Length Success rate

Expert rollouts No (1116. 284) 307 132 / 140

Learned policy No (684, 580) 80 12 / 100

Table 4.5: GAIL on 20 suboptimal AirSim-v0 rollouts: policy evaluation.

Figure 4.14: GAIL on suboptimal AirSim-v0 expert: reward convergence.
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(a) Suboptimal expert. (b) Learned policy.

Figure 4.15: Suboptimal expert rollouts vs learned policy rollouts.

4.3 Imitation Accuracy

Figure 4.16: Histogram of successful landings over training.

Figure 4.16 shows increase in the frequency of landings over training. However, there is still

a significant portion of unsuccessful landings. To further understand the gap between the problem

of approach and the problem of landing, we will compare the different components of the state

for rollouts of both the optimal expert and the learned policy. That is, we look at the position

and speed of the expert and learned policy over time, for both approach and landing. Note the

difference in timestep (x-axis) between the expert and learned policy are partly due to different

sampling frequencies used for collecting expert data and training the GAIL policy.
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4.3.1 Position Profiles

Shown below in Figure 4.17 and Figure 4.18 are the position profiles of the expert rollouts (left)

and the learned policy (right), in the x-direction and the z-direction respectively. GAIL learns an

“average” behavior of the optimal expert’s approach.

Figure 4.17: Position profile in the forward direction (X).

Figure 4.18: Position profile in the descent direction (Z).
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4.3.2 Velocity Profiles

Shown below in Figure 4.19 and Figure 4.20 are the velocity profiles of the expert trajectories

(left) and the learned trajectories (right), in the x-direction and the z-direction respectively. The

optimal expert performs a “hard” landing, as seen by the sharp drop in velocity on reaching the

goal state. This sharp, non-smooth transition in state is a difficult maneuver for GAIL to learn.

Instead, it crashes on to the landing pad without slowing down.

Figure 4.19: Velocity profile in the forward direction (X).

Figure 4.20: Velocity profile in the descent direction (Z).
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The non-smoothness of expert data makes it hard for GAIL to learn to land. Although against

the motivation for using GAIL, can we design a reward function that explains smoother landings

than the human expert?

4.4 Proxy Reward Design

We look at the problem of designing two proxy reward functions that can generate smoother

landings than the human expert, also resulting in improved performance. For this, we build on

the proxy reward structure used earlier to classify the two experts as optimal and suboptimal. We

will run Soft Actor-Critic (SAC), an RL algorithm, on these reward functions and observe their

performance.

4.4.1 Proxy 1: Simple Reward Design

As our first proxy, we use the same reward function used to classify the expert data as optimal

or suboptimal:

• Increase reward as it gets close to landing pad (1/x)

• A positive reward of +1000 on reaching the landing pad

• -10 for falling below visual cue, going out of bounds

On running SAC on this reward function, we can achieve the true reward, as shown by the

performance metrics in Table 4.6 and Figure 4.21. As expected from the proxy, SAC learns to take

the shortest path between the starting position and the landing pad, seen in Figure 4.22 and the

video here.
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Data Optimal Reward Length Success rate

Expert rollouts Yes (1141. 27) 362 120 / 120

(for comparison)

Learned policy Yes (1106, 112) 99 99 / 100

Table 4.6: SAC on proxy reward 1: policy evaluation.

Figure 4.21: SAC on proxy reward 1: reward
convergence.

Figure 4.22: Learned policy rollouts.

4.4.2 Proxy 2: Complex Reward Design

For our second proxy, we scale the reward for landing with a factor based on the UAV’s heading

and speed. The idea is to bring in variation in speed so that the drone is rewarded more for slowing

down, and not crashing into the landing pad:

• Increase reward as it gets close to landing pad (1/x)

• A scaled positive reward of +1000 on reaching the landing pad (1000*[1-scale, 1+scale])

• -10 for falling below visual cue, going out of bounds
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On running SAC with this reward function, we can do better than the desired reward, as shown

by the performance metrics in Table 4.7 and Figure 4.23. Note that the reward design was such that

it can score more than the true reward only if it slowed down and adjusted its heading on landing.

As expected from the proxy, SAC learns to make a more controlled maneuver, seen in Figure 4.24

and the video here. It is worth noting that the maneuver is visually similar to that of the optimal

human expert.

Data Optimal Reward Length Success rate

Expert rollouts Yes (1141. 27) 362 120 / 120

(for comparison)

Learned policy Yes (1265, 225) 94 97 / 100

Table 4.7: SAC on proxy reward 2: policy evaluation.

Figure 4.23: SAC on proxy reward 2: reward
convergence. Figure 4.24: Learned policy rollouts.
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4.5 The Gap Between Human Expert and RL

The complex reward proxy is able to learn maneuvers similar to the optimal expert. The more

important distinction to be made is in the manner of landing. While the pilot typically makes hard

landings on ships, its non-smoothness makes it a hard maneuver for GAIL to learn. However, the

landings learned from the proxy reward are much smoother, and can be an easier task for GAIL to

learn. This difference is also evident in the analysis of profiles, as seen earlier.

4.5.1 Position Profiles

Shown below are the forward (left) and descent (right) profiles of the optimal human expert and

the SAC-learned policy. The SAC-learned landings are much smoother, although less like what a

pilot would do.

(a) X-direction: forward. (b) Z-direction: descent.

Figure 4.25: Optimal human expert: position profiles.
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(a) X-direction: forward. (b) Z-direction: descent.

Figure 4.26: SAC-learned policy: position profiles.

4.5.2 Velocity Profiles

Shown below are the forward (left) and descent (right) speed profiles of the optimal human

expert and the SAC-learned policy. The optimal expert performs a “hard” landing, however, the

SAC-learned policy manipulates its speed during descent, resulting in smoother maneuvers.

(a) X-direction: forward. (b) Z-direction: descent.

Figure 4.27: Optimal human expert: velocity profiles.
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(a) X-direction: forward. (b) Z-direction: descent.

Figure 4.28: SAC-learned policy: velocity profiles.

4.6 Addressing Time Bottlenecks

Figure 4.29 shows the time taken per environment interaction for training GAIL on the control

tasks (Figure 4.29a) and the AirSim task (4.29b. On training for the AirSim task, the y-axis changes

from milliseconds to seconds. This huge bottleneck is shown in Table 4.8, which also shows the

overall training time per experiment.
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(a) GAIL on control tasks. (b) GAIL on AirSim-v0 and control tasks.

Figure 4.29: Environment samples are expensive.

Property CartPole-v1 Hopper-v2 AirSim-v0

Dimension (state, action) (4, 2) (11, 3) (6, 3)

Timesteps (GAIL) 3× 105 106 106

Training time 20 minutes 2 hours 36 hours (at 4x)

Time/env interaction 4ms 7.2ms 129.6ms

Clock speed Processor Processor 4 * real-time

Table 4.8: Time bottleneck: some numbers.

This expensive training time limits the number of experiments you can run. One feature that

can indirectly help reduce runtime is by setting up multiple environments on the simulator. The

concept and implementation are as shown in Figures 4.30 and 4.31 respectively.
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Figure 4.30: Multiple environments: concept.

Figure 4.31: Multiple environments: implementation.

4.7 Observations

We list some pros and cons of GAIL in general, also observed on solving the AirSim-v0 task.

Pros:

41



• Can handle unknown dynamics

• Can scale to large neural network reward functions

• Can perform well on real-world tasks (with an efficient policy optimizer)

Cons:

• Adversarial optimization hard to train

• Requires smooth experts for imitation

• First-person demonstrations are typically used (no “teaching” as such)

We will now answer the questions we sought after:

1. How does imitation accuracy scale with problem dimensionality and demo data? GAIL is

sample-efficient on high-dimensional tasks (20 trajectories)

2. How ‘smooth’ are the learned policies compared to expert policy? smooth approach, but

requires smooth experts for smooth landings

3. Can sparse rewards be learned? At what cost? Yes, requires larger demonstrations (>20)

and careful choice of HPs

4. Can GAIL imitate suboptimal experts? If high-dimensional tasks do not have large vari-

ance in data

To conclude, GAIL learns to successfully imitate the maneuvers made for approaching the

landing pad on a ship deck, for both optimal and suboptimal human experts. However, GAIL

requires smooth experts to accurately imitate landing. By learning a smoother policy with the help

of proxy reward functions, we observed an improvement in performance over the human expert

and demonstrated the benefit of smooth landings.
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5. APPLICATION: PERFORMING TASKS ON MINECRAFT

This work was inspired by the NeurIPS 2020 MineRL Competition, a competition on sample-

efficient reinforcement learning (RL) using human priors. Their goal is to promote the development

of algorithms that solve hierarchical tasks with sparse rewards and long horizon.

5.1 Background

As we have seen earlier, current methods in Deep RL are sample-inefficient. There is also a

lack of large-scale datasets for sample-efficient methods like imitation learning. This motivated

the organizers to create "MineRL" [31], a large-scale dataset of solving seven tasks on Minecraft,

with over 60 million (state, action) pairs.

5.1.1 Why Minecraft?

• Minecraft is an open-world environment, with sparse rewards and many innate task hierar-

chies and sub-goals

• A monthly subscriber base of 90 million users, making it easy to collect a large-scale dataset

• Microsoft Malmo, an open-source environment simulator for Minecraft, is readily available.

This can also be used to collect an expert dataset

5.1.2 MineRL Competition 2020

The objective is to develop algorithms to mine a Diamond object in Minecraft using limited:

• Train time (4 days)

• Compute (single GPU)

• Samples from the environment simulator (8 million)

There are two competition tracks:

• Demonstrations and Environment: MineRL dataset and 8 million env interactions

• Demonstrations Only: Using only the MineRL dataset
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This year’s competition introduced vectorized state, action spaces that obfuscates the agent’s

actions. This prevents participants from using domain knowledge. We participated in the first

track, hence used RL techniques combined with demonstrations for learning to perform the tasks.

Table 5.1 lists the properties of the MineRLTreeChopVectorObf-v0 Gym environment. The

state consists of the point-of-view snapshots of the Minecraft simulator, and an encoded "1-D

vector containing a comprehensive set of features from the game." The actions to be taken in the

simulator are encoded by a "1-D vector containing keyboard presses, mouse movements (pitch,

yaw), player GUI interactions, and agglomerative actions such as item crafting." In order to reduce

the complexity of the action space, we represent the encoded actions by K discrete points in the

action space, obtained with the help of K-means clustering. The goal is to chop 64 tree blocks.

Properties Description

State space (cts, dim=64*64*3 + 64) Dict(pov, vector)

"pov": Box(low=0, high=255, shape=(64, 64, 3))

"vector": Box(low=-1.2, high=1.2, shape=(64,))

Action space (cts, dim=64) "vector": Box(low=-1.2, high=1.2, shape=(64,))

Reward 1 for each block of chopped tree

Termination reward 64 or 8000 steps

Solved criteria Mean reward 64 over 100 consecutive episodes

Expert trajectories used [5, 10, 20] demonstrations

Table 5.1: The MineRLTreeChopVectorObf-v0 environment.

5.2 Solution Approaches

The task is to chop trees in Minecraft. As one of the goals of sample-efficient RL, we want

to avoid using massive datasets and hand-engineered features. This complex, hierarchical, and

sparsely-rewarded task demands the use of:
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• Efficient exploration techniques

• Training with human priors

• Reward shaping using IL techniques

We pick Deep Q-learning from Demonstrations (DQfD) [18], a method from the class of fD-

algorithms. This can be roughly seen as Deep-Q Networks (DQN) [7], an RL algorithm, combined

with demonstrations.

5.3 Preliminary Results

Our goal is to learn a policy that builds/improves over the expert demonstrations of a task.

Specifically, train RL algorithms, paired with demonstration data, on the true reward of a task.

We hope to learn the task of chopping trees and obtaining a diamond in Minecraft. For this the-

sis, we only look at the improvement in chopping trees on using fD algorithms: RL paired with

demonstrations, compared to learning with an RL algorithm.

5.3.1 Tools Used

• RL Library: Medipixel 0.10

• Framework: Pytorch 1.3.1

• Hyperparameters (HPs): Medipixel 0.10

• Performance metrics: W&B 0.10

We look at the same two performance metrics as before: reward convergence and policy eval-

uation. The objective is to chop trees in Minecraft (MineRLTreeChopVectorObf-v0). The task

is solved by chopping 64 tree blocks, where each chopped block results in a reward of 1. Table

5.2 lists the important HPs used. The remaining HPs were those of the LunarLander-v2 task on

Medipixel 0.10.
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Algorithm Hyperparameters Value

program num episodes 100

seed 42

K-means yes, 32

common gamma 0.995

policy ’C51DuelingMLP’

loss ’C51Loss’ (RainbowDQNLoss)

hidden size [128, 64]

optimizer Adam

learning rate 10−4

epsilon decay 5× 10−6

batch size 128

buffer size 105

DQfD pre-train step 103

loss weights λ1, λ2 1

margin 0.8

Table 5.2: Hyperparameters for Rainbow DQN and DQfD on MineRLTreeChopVectorObf-v0.

Figure 5.1 shows the performance of DQN and DQfD (roughly, DQN with demonstrations)

on the task. Although neither completely solves the task, DQfD performs significantly better

than DQN, improving with demonstrations. Figures 5.1a, 5.2b show the difference in reward

convergence and policy evaluation (testing) respectively. While DQN’s best performance on testing

was chopping a tree block (over 3 test episodes, so 0.3 on average), DQfD managed to chop 10

trees (over 4 test episodes, so 2.5 on average). This is a significant boost in performance on using

20 demonstrations, with only 100 episodes of training.
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(a) DQN on TreeChop-v0. (b) DQfD on 5, 10 demos of TreeChop-v0.

Figure 5.1: RL vs fD on MineRLTreeChopVectorObf-v0: reward convergence.

(a) DQN on TreeChop-v0.
(b) DQfD on 5, 10 demos of TreeChop-v0.

Figure 5.2: RL vs fD on MineRLTreeChopVectorObf-v0: policy evaluation.

Chopping trees in Minecraft involves a complex, extremely sparse environment that requires

careful HP selection. We are working on this as part of the MineRL Competition, whose objective

is to solve the MineRLObtainDiamondVectorObf-v0 environment, a task with a hierarchical struc-

ture (Figure 5.3) and exponential reward function (Figure 5.4), where the reward for obtaining the

diamond is 1024. The environment is far more complex and chopping trees is just the first task.
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Figure 5.3: The MineRLObtainDiamondVectorObf-v0 task hierarchy. Reprinted from [4].

Figure 5.4: The MineRLObtainDiamondVectorObf-v0 environment reward structure. Reprinted
from [4].

To summarize, we observe a boost in performance by pairing RL with demonstrations for solv-

ing the TreeChop-v0 task in Minecraft. We hope to further improve performance by exploiting the

innate hierarchy of the task, briefly mentioned in Section 6. A key limitation of learning behaviors

for these tasks, just like in AirSim-v0, is the time bottleneck. Training MineRLTreeChopVectorObf-

v0 for 100 episodes takes roughly 2 days, which is after using human demonstrations and efficient

exploration techniques. This is a challenge we hope to address with techniques like HP tuning and

multiprocessing.
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6. FUTURE WORK AND CONCLUSION

6.1 Future Work

From the earlier discussions and a careful look at the results, we note future directions of re-

search and list potential improvements in algorithmic choices, simulator performance, and problem

scaling for the two applications. We focused on specific algorithms for learning behavior, however,

there has also been interest in some recent techniques. To mention a few, there are other adver-

sarial learning methods [32], techniques such as multi-agent learning [33], transfer learning [34],

and meta-learning [35], for learning behavior or a subset of behaviors that can be generalized to

unknown environments, e.g. point-to-point maneuvers for autonomous UAVs.

6.1.1 AirSim: Autonomous UAV Maneuver and Landing

The bigger picture of our research is to deploy models on drones in real-time, for learning

maneuvers with many degrees of freedom. For example, making approaches with yaw, landing

on a moving platform, flying in the presence of wind, etc. Gazebo [36] is a better choice of

simulator than AirSim for rendering these realistic behaviors, as it contains several models of

quadcopters that can directly be used for real-world training. There has been recent work on

learning reward functions that are robust [37] or have smoothness properties [38], which show

performance improvements over GAIL on high-dimensional, sparsely-rewarded tasks.

6.1.2 MineRL: Solving Tasks in Minecraft

We plan to filter the image component of the observations through Convolutional Neural Net-

works (CNNs), to learn representations of the encoded states. Recent work shows promise in

employing hierarchical learning [39, 40], meta-learning [41], and multi-agent RL methods [42] to

learn both implicit and explicit hierarchies in tasks. It could also be beneficial to train on datasets

of individual tasks in the hierarchy (chopping trees, navigation, survival), along with datasets for

solving the complete task of obtaining a diamond. This brings in diversity in the demonstrations

and can help boost performance.
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6.2 Conclusion

This thesis was motivated by two challenges faced by modern deep Reinforcement Learning

(RL) systems: (i) exponentially growing sample requirements for learning, and (ii) undesired be-

haviors, resulting from the explicit design of cost functions. It could be easier to learn from readily

available example expert behavior, especially in tasks where environment samples and compute are

expensive. To address this, we explore sample-efficient imitation learning techniques and picked

Generative Adversarial imitation Learning (GAIL) for learning behaviors from expert demonstra-

tions.

We looked at the sparsely-rewarded problem of autonomous UAV maneuver and landing (in

simulation), inspired by the maneuvers pilots make to land on space-constrained ships. We de-

signed a novel method of employing imitation learning (GAIL) to learn the pilot’s behavior purely

from human experts. In the finite horizon case, and with sufficient demonstrations, GAIL success-

fully imitates the maneuvers made by both optimal and suboptimal experts. By training on proxy

rewards, RL methods learned smoother landings than human experts, necessitating the need for

learning from smooth human experts.

Finally, we discussed the potential of pairing expert demonstrations with RL to solve tasks

with sparse rewards, long horizon, and with restrictions on environment samples and compute.

We picked the task of chopping trees in Minecraft and showed that fD-based algorithms, roughly

interpreted as RL algorithms paired with demonstrations, are better at solving the task than RL

methods alone.

The codebase for reproducing the experiments (except for the W&B plots) in Section 3 and

Section 4 is available here. The README is easy to follow and the codebase includes features

like Tensorboard, multiprocessing, and callbacks for performance monitoring and feedback. The

codebase for Section 5 is currently private, as we are participating in the MineRL competition. It

should be publicly accessible here on Jan 1, 2021!
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