
1Learning from Demonstrations

Student: Prabhasa Kalkur
Advisor: Dr. Dileep Kalathil

Learning from Demonstrations: Applications to
Autonomous UAV Landing and Minecraft

Oct 05, 2020

2Learning from Demonstrations

What is imitation learning?

Learning to imitate from expert behavior

Sample-efficient learning: learn behavior from as little expert data as possible

3Learning from Demonstrations

What is the presentation about?

• Motivate the need for sample-efficient methods for learning complex behavior

• Pick Imitation Learning (IL) algorithms to learn desired behavior

• Apply GAIL to the sparsely-rewarded task of landing a drone (simulation)

• Discuss potential of sample-efficient learning to solve complex tasks in Minecraft

4Learning from Demonstrations

Reinforcement Learning

• 𝑠, 𝑠′ ∈ 𝑆, 𝑎 ∈ 𝐴. Consider tuple [𝑺, 𝑨, 𝑷 𝒔′ 𝒔, 𝒂 , 𝑹 𝒔, 𝒂 , 𝛾, 𝐻], define a policy (model) 𝜋 ∶ 𝑆 → 𝐴

– Reinforcement Learning (RL): find an optimal 𝜋 that maximizes σ𝑡=0
∞ 𝛾𝑡𝑅𝑡*

Rollouts: (𝑆, 𝐴) from 𝜋*

true reward/cost/score

Performance metrics

100 episodes of policy:

95/100 successful

Reward (mean, std): (-175, 50)

5Learning from Demonstrations

Sections

1. Introduction to Imitation Learning

2. Application 1: Autonomous UAV Landing

3. Application 2: Minecraft

4. Conclusions and Future Work

6Learning from Demonstrations

Why study imitation learning?

1. Rewards obvious in computer games: maximize score

– Not so obvious in real-word scenarios: use a proxy instead

vs

7Learning from Demonstrations

Why study imitation learning?

2. Can be easier to demonstrate desired behavior

3. Modern Deep-RL requires exponentially increasing number of samples

– Not practical, especially when env samples are expensive, and compute is limited

– One approach: use sample-efficient methods like Imitation Learning

Many competitions trying to promote compute and sample-efficient learning:

– NeurIPS 2019: Game of Drones

– NeurIPS 2019 & 2020: MineRL Challenge

4. How humans and animals fundamentally learn behavior

8Learning from Demonstrations

RL algorithms

• 𝑠, 𝑠′ ∈ 𝑆, 𝑎 ∈ 𝐴. For MDP 𝑺, 𝑨,𝑷 𝒔′ 𝒔, 𝒂 , 𝑹 𝒔, 𝒂 , 𝛾 , define a policy 𝝅 ∶ 𝑆 → 𝐴

– Goal: find an optimal 𝝅 that maximizes σ𝒕=𝟎
∞ 𝜸𝒕𝑹𝒕

– Metric: (i) Reward convergence, (ii) Policy evaluation (testing)

*

policy evaluation
reward convergence

9Learning from Demonstrations

IL algorithms

• 𝑠, 𝑠′ ∈ 𝑆, 𝑎 ∈ 𝐴. For MDP [𝑺, 𝑨,𝑷 𝒔′ 𝒔, 𝒂 , 𝑹 𝒔, 𝒂 , 𝛾], define a policy 𝝅 ∶ 𝑆 → 𝐴

– Goal: given 𝝉 = (𝒔𝟎, 𝒂𝟎, 𝒔𝟏, 𝒂𝟏,…, 𝒔𝒕, 𝒂𝒕, …, 𝒔𝑻) generated from a 𝝅 , extract its 𝑹 𝒔, 𝒂

– Metric: Reward evaluation (?)

*

reward evaluation

Flowchart credits: Sapana

10Learning from Demonstrations

Imitation Learning approaches

Ho et. al., 2016

Finn et. al., 2016Ziebart et. al. 2008

Ross et. al., 2011

Generative Adversarial Imitation Learning (GAIL) is the SOTA IL algorithm

11Learning from Demonstrations

Some questions…

1. How does imitation accuracy scale with problem dimensionality and demo data?

2. How ‘smooth’ are the learned policies compared to the expert policy?

3. Can behaviors with sparse rewards be learned? At what cost?

4. Can GAIL imitate suboptimal experts? At what cost?

5. Can GAIL generalize?

Let us learn how to imitate a simple control task: balance an inverted pendulum!

12Case Studies: OpenAI Gym and MuJoCo

Problem setup

Train RL -> rollout expert -> Train IL -> policy evaluation (test)

Goal: GAIL should be able to ‘imitate’ expert (optimal/suboptimal?)

Discuss: imitation accuracy, sample efficiency, effect of reward quality on learning

• Expert trajectories / rollout / demonstrations: sample demos [5, 10, 20]

• Policy evaluation / rollout / testing: Check policy performance for 100 episodes

• Task solved each episode: True reward for 100 consecutive episodes during training

13Case Studies: OpenAI Gym and MuJoCo

Tools

• RL library: Stable Baselines 2.10

• Framework: TensorFlow 1.14

• Hyperparameters (HPs): RL Baselines Zoo, etc.

• Performance metrics (learned reward vs episodes, test scores): Tensorboard 1.14, W&B 0.10

RL/IL Algorithms

• SAC – Soft Actor-Critic (optimal experts)

• TRPO – Trust Region Policy Optimization (policy optimizer for GAIL)

• BC - Behavioral Cloning* (comparison with GAIL)

*with policy: “MlpPolicy” [100, 100], optimizer: Adam, batch size: 256, train-val: 70-30

14Learning from Demonstrations

Sections

1. Introduction to Imitation Learning

2. Application 1: Autonomous UAV Landing

3. Application 2: Minecraft

4. Conclusions and Future Work

AirSim: Autonomous UAV
Navigation and Landing

APPLICATION 1

16Application 1: Autonomous UAV maneuver & landing

Landing on ships

Landing Zone Ground Ship

Space Large Limited

Motion None 6 DOF

Visual
References

More Less

Alternate L/D
Places

Many Less

Weather Affected Extremely
affected

Slide credits: Bochan

17Application 1: Autonomous UAV maneuver & landing

Common Approaches

An approach toward visual autonomous ship board landing of a VTOL UAV
by J.L. Sanchez, Journal of Intelligent & Robotic System, 2014

Computer vision-based for autonomous landing
by G.Xu, Pattern Recogn.Lett., 2009

Flytdock by flytbase company, June 8, 2018

Slide credits: Bochan

ALL of them are looking at landing spot

18Application 1: Autonomous UAV maneuver & landing

How does a pilot approach the ship?

Slide credits: Bochan

19Learning from Demonstrations

CONTRIBUTIONS

Landing a UAV on a ship without looking at landing spot (simulation)

Refer to a visual cue for positioning, just like a pilot

Bring pilot’s intuition and flying skills using imitation learning (GAIL)

20Application 1: Autonomous UAV maneuver & landing

Environment simulator

• Need a high-fidelity simulator environment for Unmanned Aerial Vehicles (UAVs)

• Microsoft AirSim 2.0

– “An open source, cross platform simulator built on Unreal Engine”

– Can integrate a flight controller for collecting demonstrations

– Community support (NeurIPS 2019)

• Designed a custom ship deck

– Landing pad, visual cue

– Drone from AirSim

21Application 1: Autonomous UAV maneuver & landing

X (forward)

Y (lateral)

Z (vertical)

AirSim environment: Front & Side view

Drone (0, 0, -4)

Landing pad

(15, 0, -0.1)

Visual cue

(25, 0, -0.3)

22Application 1: Autonomous UAV maneuver & landing

The AirSim-v0 environment

Parameters Details

State space (cts, dim = 6)

Drone position, velocity (X, Y, Z). Goal: 4x4 square around [15, 0, -0.1]

Position: X [0, 17], Y [-2, 2], Z [-5, 0] – negative Z upwards
Velocity: X [-1, 3], Y [-1, 1], Z [-4, 4]

Action space (cts, dim = 3) [Pitch (rad), Roll (rad), Throttle (0, 1)]. Yaw zero. Negative pitch down

Termination / Horizon Timeout (finite/infinite), out of bounds, below visual cue, crash, land

• Want to able to classify expert demos as optimal/suboptimal. Assign a simple proxy reward

• Higher reward for getting closer to landing pad, penalty for termination without reaching goal

23Application 1: Autonomous UAV maneuver & landing

Generating human expert data

• Xbox controller:

– Extremely sensitive

– Cannot make custom calibration

• “Taranis x9d” flight controller:

– Smoother data logging

– Disabled yaw from the controller

• Collected 120 demonstrations of landing UAV

– Started at random positions inside the box

– Maneuver: different heights and at varying speeds

– Collected (state, action, reward) pairs using AirSim APIs

25Application 1: Autonomous UAV maneuver & landing

Human expert demos – stats

Expert Optimal Solved Expert score
(mean, std)

Expert length

Optimal Yes 120/120 (1141, 27) 362

Suboptimal No 132/140 (1116, 284) 307

• True reward (for proxy function): 1000

• Task: Train GAIL on expert samples [5, 10, 20, 50, 120] to learn behavior (optimal/suboptimal)

• Video of expert data collection: https://youtu.be/e1noOIhzhQ4

https://youtu.be/e1noOIhzhQ4

26Application 1: Autonomous UAV maneuver & landing

Expert Trajectories: humans

Optimal Suboptimal

GAIL on suboptimal human expert
[20, 50, 120] experts, finite horizon (400 steps, same as expert)

Learned model: https://youtu.be/lUDpZna4uhk

https://youtu.be/lUDpZna4uhk

28Application 1: Autonomous UAV maneuver & landing

AirSim-v0 (IL)
Suboptimal expert

GAIL hyperparameters

• n_timesteps: 2e5

• policy: ‘MlpPolicy’

[128, 128]

• gamma: 0.99

• learning_rate: 3e-4

• timesteps_per_batch: 256

• buffer_size: 1e6
reward convergence

29Application 1: Autonomous UAV maneuver & landing

GAIL on suboptimal human expert

Suboptimal expert GAIL-learned policy

GAIL on optimal human expert
[20, 50, 120] experts, finite horizon (400 steps, same as expert)

Learned model: https://youtu.be/3ilW7LzqI2Y

https://youtu.be/3ilW7LzqI2Y

31Application 1: Autonomous UAV maneuver & landing

AirSim-v0 (IL)
Optimal expert

GAIL hyperparameters

• n_timesteps: 3e5

• policy: ‘MlpPolicy’

[128, 128]

• gamma: 0.99

• learning_rate: 3e-4

• timesteps_per_batch: 256

• buffer_size: 1e6
reward convergence

32Application 1: Autonomous UAV maneuver & landing

GAIL on optimal human expert

Optimal expert GAIL-learned policy

33Application 1: Autonomous UAV maneuver & landing

Conclusions

• GAIL can imitate navigation (point A to point B)

• GAIL can learn optimal landings. HP-dependent

• Explanation: landings may be too ‘non-smooth’ for GAIL to learn

• Can we perhaps construct a proxy reward that conveys smoother landings?

• Can RL algorithms learn smoother landings from this proxy?

EXPERT REWARD DESIGN
Can RL learn a ‘smoother’ landing than human expert?

Learned models:

Simple - https://youtu.be/qJJOOOWfYcI

Complex - https://youtu.be/cFpFTDo-V7k

https://youtu.be/qJJOOOWfYcI
https://youtu.be/cFpFTDo-V7k

35Application 1: Autonomous UAV maneuver & landing

Proxy reward function design

1. Simple reward (sparse):

– Increase reward as it gets close to landing pad (1/x)

– Large positive reward if it lands inside the landing pad (+1000)

– Other conditions: -10 (visual cue, out of bounds, crash, timeout)

2. Complex reward (sparse):

– Increase reward as it gets close to landing pad (1/x)

– Scale goal reward according to drone heading, speed (1250-750)

– Other conditions: -10 (visual cue, out of bounds, crash, timeout)

Reward Heatmap

36Application 1: Autonomous UAV maneuver & landing

SAC on AirSim-v0: Proxy rewards

37Application 1: Autonomous UAV maneuver & landing

RL-generated expert demos

Proxy: simple Proxy: complex

LANDING: HUMANS vs GAIL vs RL
Change in speed

39Application 1: Autonomous UAV maneuver & landing

Forward speed

Human expert GAIL-learned policy RL expert

40Application 1: Autonomous UAV maneuver & landing

Descent speed

Human expert GAIL-learned policy RL expert

41Application 1: Autonomous UAV maneuver & landing

Summary: humans vs GAIL vs RL

Expert Maneuver type
demonstrated/learned

Optimal Landed Score
(mean, std)

Expert
length

Human: Optimal Hard landing (pilot) Yes 120/120 (1141, 27) 362

Human: Suboptimal Large variance No 132/140 (1116, 284) 307

GAIL: optimal (20 demos) Navigation, *Landing *Yes 84/100 (1048, 292) 80

GAIL: suboptimal (20 demos) Navigation only *No 12/100 (684, 580) 80

SAC: Simple Shortest-path Yes 99/100 (1106, 112) 99

SAC: Complex Smooth landing Yes 97/100 (1265, 225) 94

*Smooth landings crucial for perfect imitation with GAIL

42Application 1: Autonomous UAV maneuver & landing

Some questions…

1. How does imitation accuracy scale with dimensionality, demo data? Sample-efficient

2. How ‘smooth’ are the learned policies compared to the expert policy? smooth if expert is smooth

3. Can sparse rewards be learned? At what cost? Yes, needs >20 demos, tuned HPs

4. Can GAIL imitate suboptimal experts? navigation easy, landing difficult. Tuned HPs

5. Can GAIL generalize? Tried different bounding boxes for optimal expert, GAIL policy. Need tuned HPs

43Application 1: Autonomous UAV maneuver & landing

Summary

• GAIL can imitate AirSim-v0 human experts. Navigation easy, landing not-so-easy

• RL on proxy rewards can generate smoother landings – necessary for GAIL

– reward 𝜖 space of cost functions explored

• Expensive training time limits number of experiments you can run

• Lack of tuned HPs affects imitation accuracy

44Application 1: Autonomous UAV maneuver & landing

Environment samples are expensive!

45Learning from Demonstrations

Some numbers to crunch on…

Property CartPole-v1 Hopper-v2 AirSim-v0

Dimension (state, action) (4, 2) (11, 3) (6, 3)

Timesteps (GAIL) 3e5 1e6 1e6

Episode length (max) 500 1000 400 (human), 100 (RL)

Training time 20 minutes 2 hours 36 hours (at 4x)

Time/env interaction 4 ms 7.2 ms 129.6 ms

Time/episode 2 s 7.2 s 17.1 s (human), 4.3 s (RL)

Clock speed Processor (4.8GHz) Processor (4.8GHz) 4 x real time

Cumulative mean reward Converged Converged Did not converge

46Application 1: Autonomous UAV maneuver & landing

47Application 1: Autonomous UAV maneuver & landing

Sections

1. Introduction to Imitation Learning

2. Application 1: Autonomous UAV Landing

3. Application 2: Minecraft

4. Conclusions and Future Work

MineRL: Chopping trees and
mining a Diamond in Minecraft

APPLICATION 2

49Application 2: Tasks on Minecraft

MineRL Competition: NeurIPS 2020

• Lack of large-scale imitation learning datasets

• MineRL: a large-scale dataset of seven different tasks on Minecraft (60 mil pairs)

Why Minecraft:

• Open-world env, sparse rewards, many innate task hierarchies and sub-goals

• 90 million monthly active users, easy to collect a large-scale dataset

• Env simulator available: Microsoft Malmo

50Application 2: Tasks on Minecraft

MineRL Competition: Description

• Competition on sample-efficient reinforcement learning using human priors

• Address two crucial challenges in RL. Solving hierarchical environments with

– Sparse rewards

– Long time horizon

• Develop algorithms to mine a Diamond object in Minecraft using limited

– Train time (4 days)

– Compute (single GPU)

– Samples from the environment simulator (8 million)

51Application 2: Tasks on Minecraft

MineRL Competition: Solution approaches

• “…highlight a variety of research challenges, including open-world multi-agent

interactions, long-term planning, vision, control, navigation, and explicit and

implicit subtask hierarchies”

• Want to avoid massive datasets and hand-engineered features

• Complex, hierarchical, sparsely-rewarded task that demands use of:

– Efficient exploration techniques

– Training with human priors (e.g. fD algorithms) 

– Reward shaping using IL techniques

52Application 2: Tasks on Minecraft

MineRL Competition: Details

• Two competition tracks:

– Demonstrations and Environment: MineRL dataset + 8M env interactions 

– Demonstrations Only: MineRL dataset only

• What’s new from 2019: Vectorized state, action space that obfuscates the agent’s actions

– Prevent participants from using domain knowledge

– State: images + 1-D vector containing comprehensive set of features from the game

– Actions: 1-D vector containing keyboard presses, mouse movements (pitch, yaw), player

GUI interactions, and agglomerative actions such as item crafting

Visualizing the MineRL envs & dataset

MineRLTreeChopVectorObf-v0: https://youtu.be/q9DtmFJMc5I

MineRLObtainDiamondVectorObf-v0: https://youtu.be/mexGyw1PoT0

https://youtu.be/q9DtmFJMc5I
https://youtu.be/mexGyw1PoT0

54Application 2: Tasks on Minecraft

Obtain Diamond: Tasks and Rewards

55Application 2: Tasks on Minecraft

RL with human priors (RL + IL!)

56Application 2: Tasks on Minecraft

Tools

• RL library: Medipixel 0.10

• Framework: Pytorch 1.3.1

• Hyperparameters (HPs): Medipixel 0.10

• Results (train score vs episodes, test score): W&B 0.10

DQN (RL) vs DQfD (RL+IL)

MineRLTreeChopVectorObf-v0: https://youtu.be/YDpVRyZndCg

MineRLObtainDiamondVectorObf-v0: https://youtu.be/b-SGp7PKbxM

https://youtu.be/YDpVRyZndCg
https://youtu.be/b-SGp7PKbxM

58Application 2: Tasks on Minecraft

DQN

DQfD

59Application 2: Tasks on Minecraft

Submitted to MineRL Competition: NeurIPS 2020

60Learning from Demonstrations

Sections

1. Introduction to Imitation Learning

2. Application 1: Autonomous UAV Landing

3. Application 2: Minecraft

4. Conclusions and Future Work

61Learning from Demonstrations

CONCLUSIONS

• Need sample-efficient learning for complex, long-horizon tasks

• IL (GAIL) is a sample-efficient approach to learn from demonstrations

• IL can be used to imitate (even suboptimal) experts from sparsely-rewarded environments

– Requires smooth experts and careful HP tuning for perfect imitation

• Application 1: Designed a novel method of autonomous UAV landing (simulation)

• Application 2: Discussed potential of IL + RL on a complex, sparse, long-horizon, hierarchical task

62Learning from Demonstrations

THANK YOU!

