

Learning from Demonstrations: Applications to Autonomous UAV Landing and Minecraft

Student: Prabhasa Kalkur **Advisor:** Dr. Dileep Kalathil

Oct 05, 2020

What is imitation learning?

Learning to imitate from expert behavior

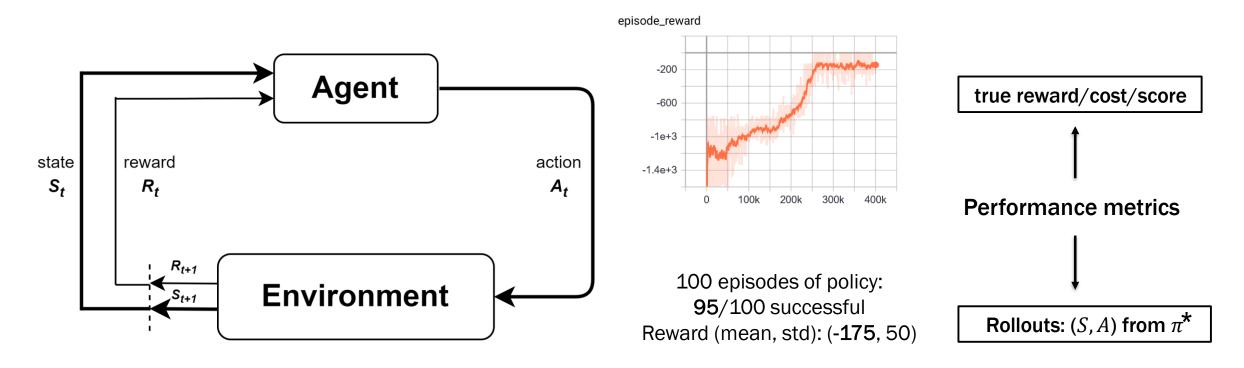
Sample-efficient learning: learn behavior from as little expert data as possible

What is the presentation about?

- Motivate the need for **sample-efficient** methods for learning complex behavior
- Pick Imitation Learning (IL) algorithms to learn desired behavior
- Apply GAIL to the **sparsely-rewarded** task of landing a drone (simulation)
- Discuss potential of sample-efficient learning to solve complex tasks in Minecraft

Reinforcement Learning

- $s, s' \in S, a \in A$. Consider tuple $[S, A, P(s'|s, a), R(s, a), \gamma, H]$, define a policy (model) $\pi : S \to A$
 - Reinforcement Learning (RL): find an optimal π^* that maximizes $\sum_{t=0}^{\infty} \gamma^t R_t$



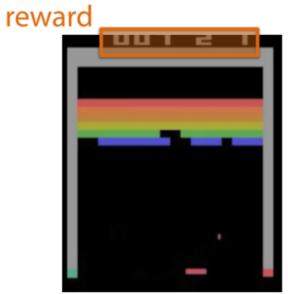
Sections

1. Introduction to Imitation Learning

- 2. Application 1: Autonomous UAV Landing
- 3. Application 2: Minecraft
- 4. Conclusions and Future Work

Why study imitation learning?

- 1. Rewards obvious in computer games: maximize score
 - Not so obvious in real-word scenarios: use a proxy instead



Mnih et al. '15

VS



Why study imitation learning?

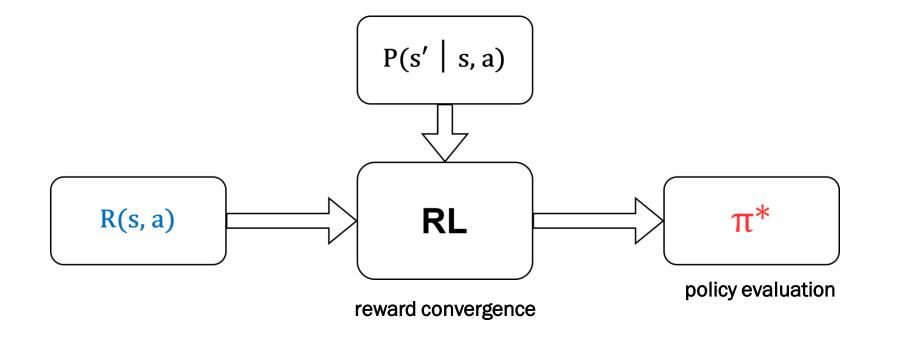
- 2. Can be easier to **demonstrate** desired behavior
- 3. Modern Deep-RL requires exponentially increasing number of samples
 - Not practical, especially when env samples are expensive, and compute is limited
 - One approach: use sample-efficient methods like Imitation Learning

Many competitions trying to promote compute and sample-efficient learning:

- NeurIPS 2019: Game of Drones
- NeurIPS 2019 & 2020: MineRL Challenge
- 4. How humans and animals fundamentally learn behavior

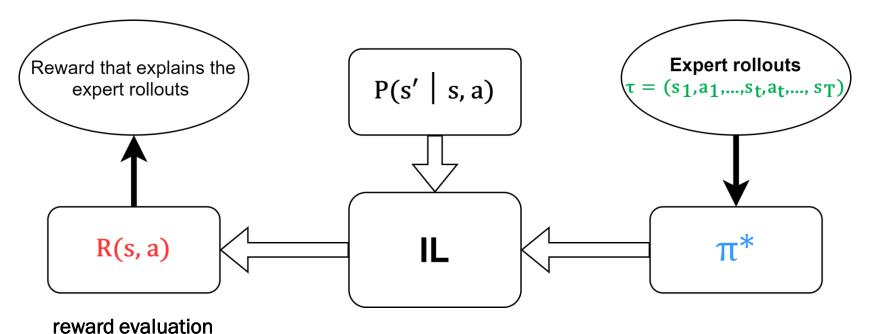
RL algorithms

- $s, s' \in S, a \in A$. For MDP $[S, A, P(s'|s, a), R(s, a), \gamma]$, define a policy $\pi : S \to A$
 - Goal: find an optimal π^* that maximizes $\sum_{t=0}^{\infty} \gamma^t R_t$
 - **Metric:** (i) Reward convergence, (ii) Policy evaluation (testing)



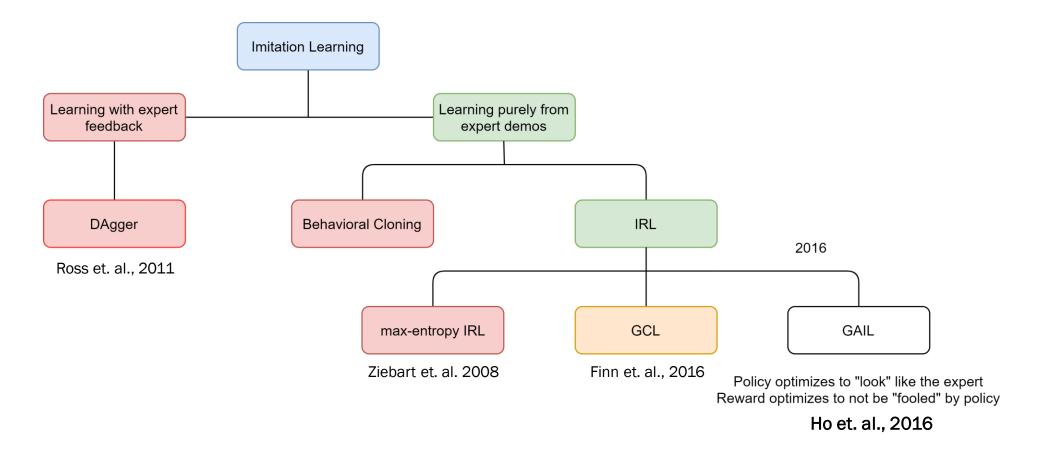
IL algorithms

- $s, s' \in S, a \in A$. For MDP $[S, A, P(s'|s, a), R(s, a), \gamma]$, define a policy $\pi : S \to A$
 - Goal: given $\tau = (s_0, a_0, s_1, a_1, \dots, s_t, a_t, \dots, s_T)$ generated from a π^* , extract its R(s, a)
 - **Metric:** Reward evaluation (?)



Flowchart credits: Sapana

Imitation Learning approaches



Generative Adversarial Imitation Learning (GAIL) is the SOTA IL algorithm

Some questions...

- 1. How does imitation accuracy scale with problem dimensionality and demo data?
- 2. How 'smooth' are the learned policies compared to the expert policy?
- 3. Can behaviors with sparse rewards be learned? At what cost?
- 4. Can GAIL imitate suboptimal experts? At what cost?
- 5. Can GAIL generalize?

Let us learn how to imitate a simple control task: balance an inverted pendulum!

Problem setup

Train RL -> rollout expert -> Train IL -> policy evaluation (test)

Goal: GAIL should be able to 'imitate' expert (optimal/suboptimal?)

Discuss: imitation accuracy, sample efficiency, effect of reward quality on learning

- Expert trajectories / rollout / demonstrations: sample demos [5, 10, 20]
- Policy evaluation / rollout / testing: Check policy performance for 100 episodes
- Task solved each episode: True reward for 100 consecutive episodes during training

Tools

- **RL library:** Stable Baselines 2.10
- Framework: TensorFlow 1.14
- Hyperparameters (HPs): RL Baselines Zoo, etc.
- Performance metrics (learned reward vs episodes, test scores): Tensorboard 1.14, W&B 0.10

RL/IL Algorithms

- **SAC** Soft Actor-Critic (optimal experts)
- **TRPO** Trust Region Policy Optimization (policy optimizer for GAIL)
- **BC** Behavioral Cloning* (comparison with GAIL)

*with policy: "MIpPolicy" [100, 100], optimizer: Adam, batch size: 256, train-val: 70-30

Sections

- 1. Introduction to Imitation Learning
- 2. Application 1: Autonomous UAV Landing
- 3. Application 2: Minecraft
- 4. Conclusions and Future Work

AirSim: Autonomous UAV Navigation and Landing

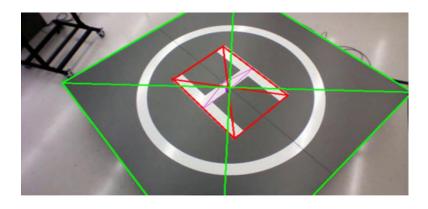
APPLICATION 1

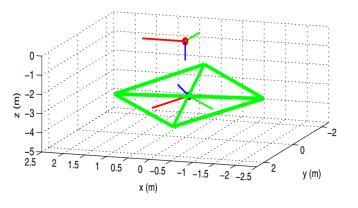
Landing on ships

Landing Zone	Ground	Ship	
Space	Large	Limited	
Motion	None	6 DOF	
Visual References	More	Less	
Alternate L/D Places	Many	Less	
Weather	Affected	Extremely affected	

Slide credits: Bochan

Common Approaches





ALL of them are looking at landing spot

Computer vision-based for autonomous landing by G.Xu, Pattern Recogn.Lett., 2009

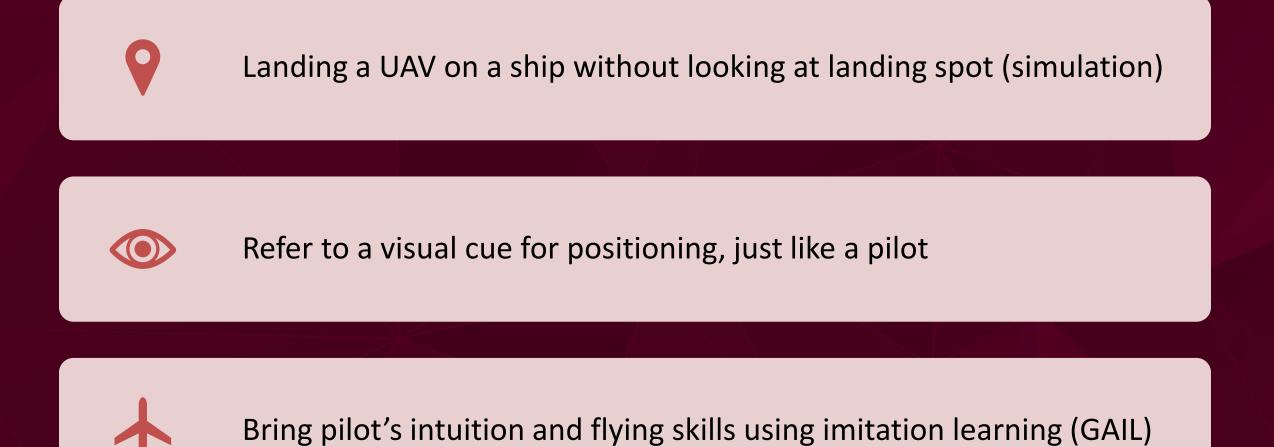
Flytdock by flytbase company, June 8, 2018

Slide credits: Bochan

How does a pilot approach the ship?

Slide credits: Bochan

CONTRIBUTIONS



Environment simulator

- Need a high-fidelity simulator environment for Unmanned Aerial Vehicles (UAVs)
- Microsoft AirSim 2.0
 - "An open source, cross platform simulator built on Unreal Engine"
 - Can integrate a flight controller for collecting demonstrations
 - Community support (NeurIPS 2019)
- Designed a custom ship deck
 - Landing pad, visual cue
 - Drone from AirSim

AirSim environment: Front & Side view

The AirSim-v0 environment

Parameters	Details	
State space (cts, dim = 6)	Drone position, velocity (X, Y, Z). Goal: 4x4 square around [15, 0, -0.1] Position: X [0, 17], Y [-2, 2], Z [-5, 0] – negative Z upwards	
	Velocity: X [-1, 3], Y [-1, 1], Z [-4, 4]	
Action space (cts, dim = 3)	[Pitch (rad), Roll (rad), Throttle (0, 1)]. Yaw zero. Negative pitch down	
Termination / Horizon	Timeout (finite/infinite), out of bounds, below visual cue, crash, land	

- Want to able to classify expert demos as optimal/suboptimal. Assign a simple proxy reward
- Higher reward for getting closer to landing pad, penalty for termination without reaching goal

Generating human expert data

- Xbox controller:
 - Extremely sensitive
 - Cannot make custom calibration
- "Taranis x9d" flight controller:
 - Smoother data logging
 - Disabled yaw from the controller
- Collected 120 demonstrations of landing UAV
 - Started at random positions inside the box
 - Maneuver: different heights and at varying speeds
 - Collected (state, action, reward) pairs using AirSim APIs

alaudek piControl visio subgradsful Joyalish (ERLEX (Bernera): 0.595500, 0.005000, 0.120000, 0.00000, 0.000000000 ICMOSE Angle Ashiole is already anned collision Countril equestApiControl vias subgradful

Anaconda Prompt (Miniconda3) - py., — — X -0.007070789113640785 -0.0663386657834053 0.1200 0000476837158 0.0 0.5954999923706055 0 0.0 0.6341 36438369751 -0.0275372676551342 -0.00759696960449 21875 0.023222249001264572 -0.024524075910449028

-5.133330887474585e-06 -1.6557676792144775 0.1081 6861689090729 8.055675425566733e-05 -0.0026625116 729832735 -0.06487688531364562 2.8654918560913466 e-05

and the second second

\$

13

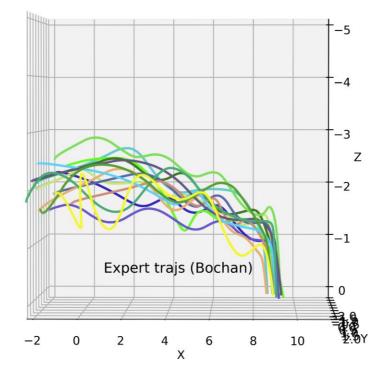
2

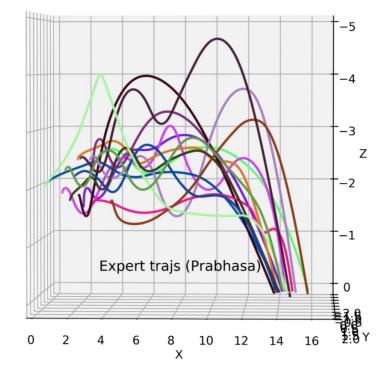
Human expert demos – stats

Expert	Optimal	Solved	Expert score (mean, std)	Expert length
Optimal	Yes	120/120	(1141, 27)	362
Suboptimal	No	132/140	(1116, 284)	307

- True reward (for proxy function): 1000
- Task: Train GAIL on expert samples [5, 10, 20, 50, 120] to learn behavior (optimal/suboptimal)
- Video of expert data collection: https://youtu.be/e1noOlhzhQ4

Expert Trajectories: humans





Optimal

Suboptimal

GAIL on suboptimal human expert

[20, 50, 120] experts, finite horizon (400 steps, same as expert)

Learned model: <u>https://youtu.be/IUDpZna4uhk</u>

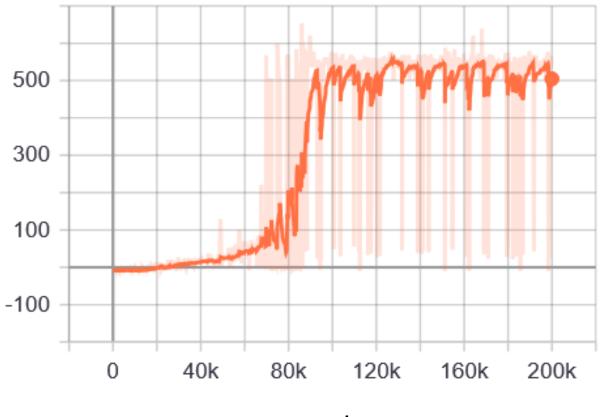
TEXAS A&M UNIVERSITY Engineering

AirSim-v0 (IL) Suboptimal expert

GAIL hyperparameters

- n_timesteps: 2e5
- policy: 'MlpPolicy' [128, 128]
- gamma: 0.99
- learning_rate: 3e-4
- timesteps_per_batch: 256
- buffer_size: 1e6

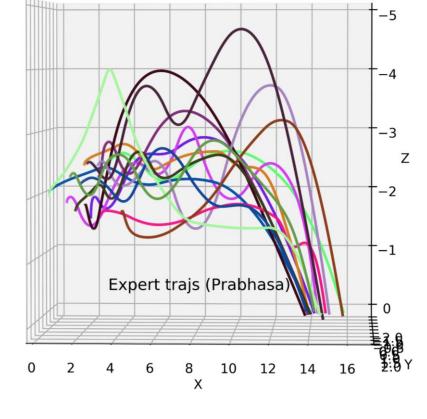
episode_reward



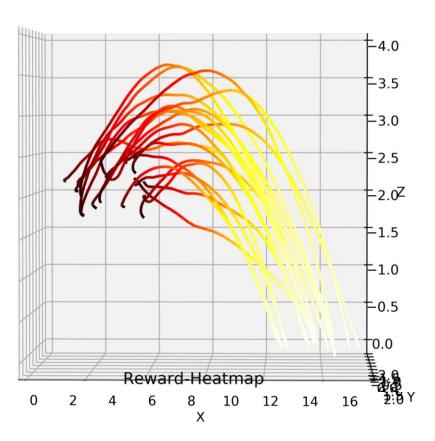
reward convergence

Application 1: Autonomous UAV maneuver & landing

GAIL on suboptimal human expert



Suboptimal expert



GAIL-learned policy

GAIL on optimal human expert

[20, 50, 120] experts, finite horizon (400 steps, same as expert)

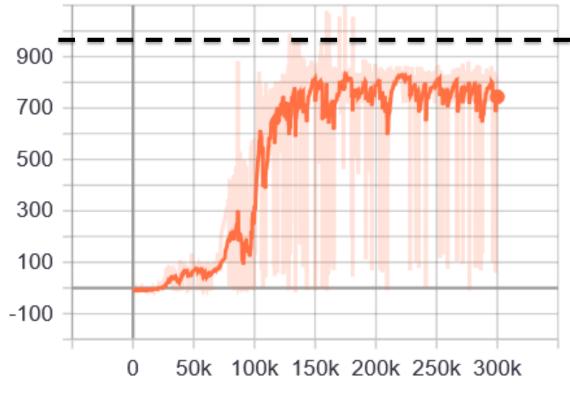
Learned model: https://youtu.be/3ilW7Lzql2Y

AirSim-v0 (IL) Optimal expert

GAIL hyperparameters

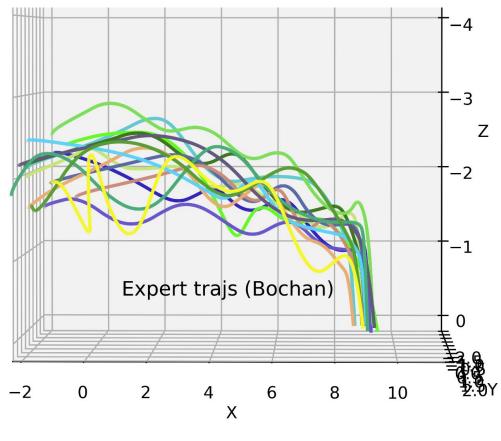
- n_timesteps: 3e5
- policy: 'MlpPolicy' [128, 128]
- gamma: 0.99
- learning_rate: 3e-4
- timesteps_per_batch: 256
- buffer_size: 1e6

episode_reward

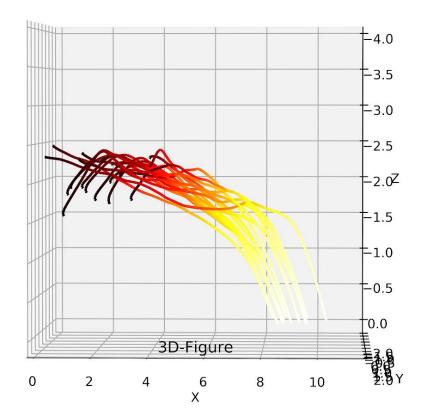


reward convergence

GAIL on optimal human expert



Optimal expert



GAIL-learned policy

Conclusions

- GAIL can imitate **navigation** (point A to point B)
- GAIL can learn optimal landings. HP-dependent
- Explanation: landings may be too 'non-smooth' for GAIL to learn

- Can we perhaps **construct a proxy reward** that conveys smoother landings?
- Can RL algorithms learn smoother landings from this proxy?

EXPERT REWARD DESIGN

Can RL learn a 'smoother' landing than human expert?

Learned models:

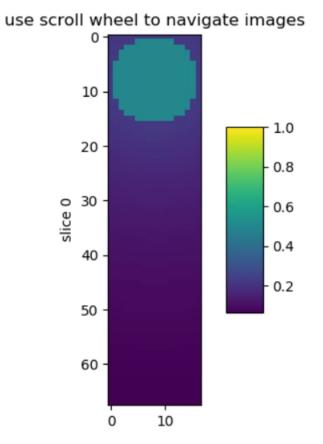
Simple - https://youtu.be/qJJOOOWfYcl

Complex - <u>https://youtu.be/cFpFTDo-V7k</u>

Proxy reward function design

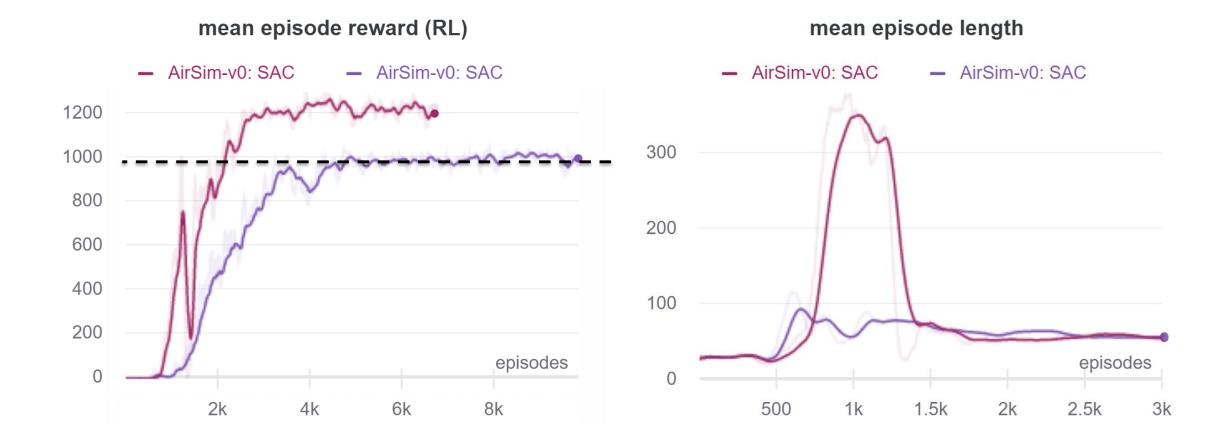
- 1. Simple reward (sparse):
 - Increase reward as it gets close to landing pad (1/x)
 - Large positive reward if it lands inside the landing pad (+1000)
 - Other conditions: -10 (visual cue, out of bounds, crash, timeout)

- 2. Complex reward (sparse):
 - Increase reward as it gets close to landing pad (1/x)
 - Scale goal reward according to drone heading, speed (1250-750)
 - Other conditions: -10 (visual cue, out of bounds, crash, timeout)

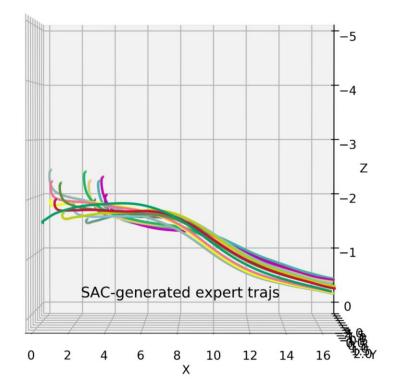


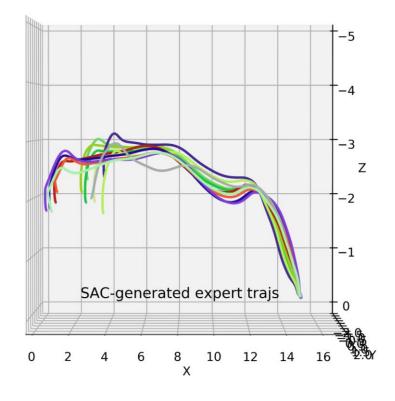
Reward Heatmap

SAC on AirSim-v0: Proxy rewards



RL-generated expert demos





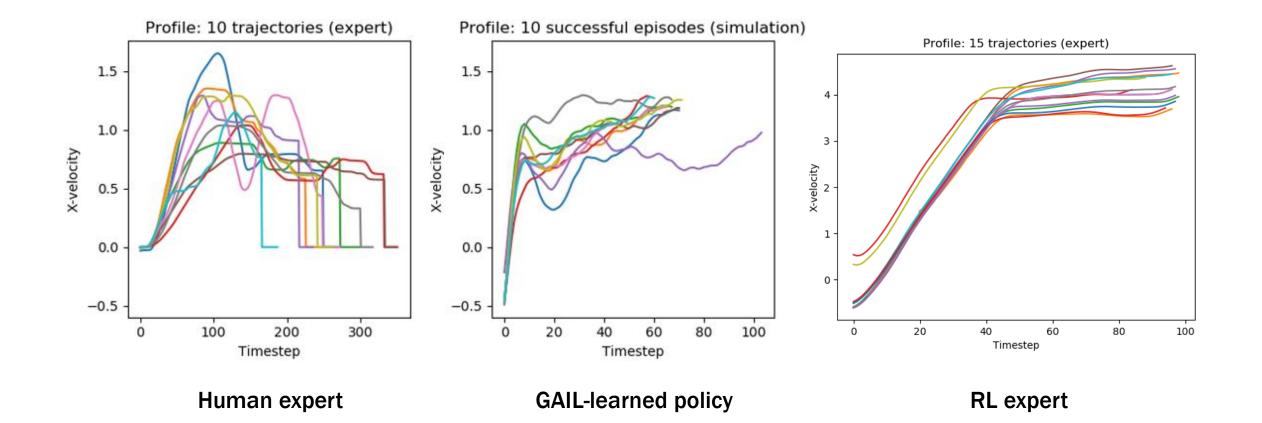
Proxy: simple

Proxy: complex

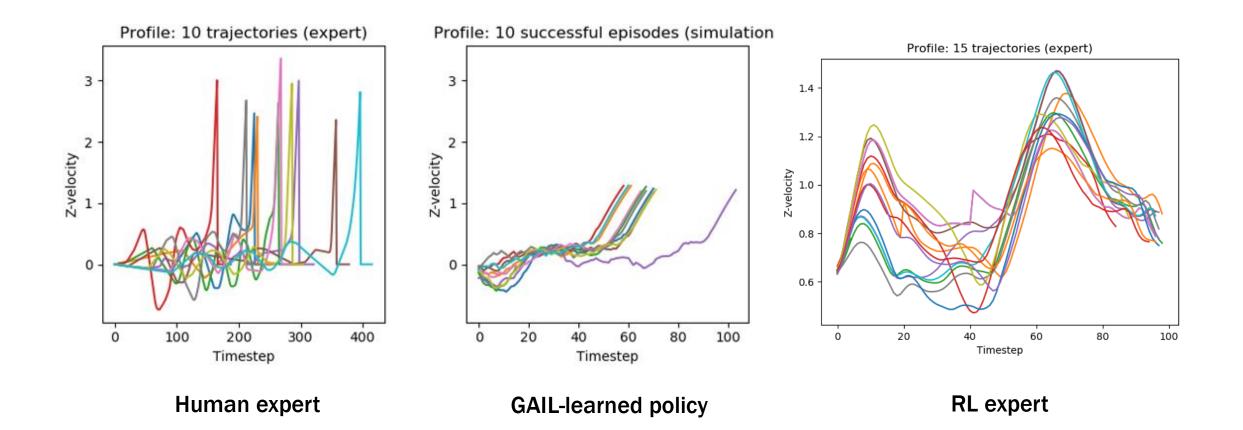
LANDING: HUMANS vs GAIL vs RL

Change in speed

Forward speed



Descent speed



Summary: humans vs GAIL vs RL

Expert	Maneuver type demonstrated/learned	Optimal	Landed	Score (mean, std)	Expert length
Human: Optimal	Hard landing (pilot)	Yes	120/120	(1141, 27)	362
Human: Suboptimal	Large variance	No	132/140	(1116, 284)	307
GAIL: optimal (20 demos)	Navigation, *Landing	*Yes	84/100	(1048, 292)	80
GAIL: suboptimal (20 demos)	Navigation only	*No	12/100	(684, 580)	80
SAC: Simple	Shortest-path	Yes	99/100	(1106, 112)	99
SAC: Complex	Smooth landing	Yes	97/100	(1265, 225)	94

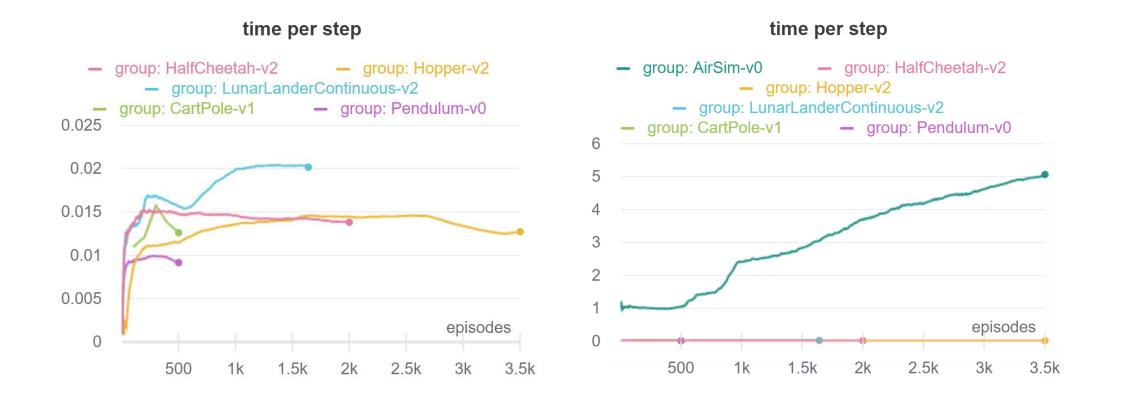
*Smooth landings crucial for perfect imitation with GAIL

Some questions...

- 1. How does imitation accuracy scale with dimensionality, demo data? Sample-efficient
- 2. How 'smooth' are the learned policies compared to the expert policy? **smooth if expert is smooth**
- 3. Can sparse rewards be learned? At what cost? Yes, needs >20 demos, tuned HPs
- 4. Can GAIL imitate suboptimal experts? navigation easy, landing difficult. Tuned HPs
- 5. Can GAIL generalize? Tried different bounding boxes for optimal expert, GAIL policy. Need tuned HPs

- GAIL can imitate AirSim-vO human experts. Navigation easy, landing not-so-easy
- RL on proxy rewards can generate **smoother landings** necessary for GAIL
 - reward ϵ space of cost functions explored
- Expensive training time limits number of experiments you can run
- Lack of **tuned HPs** affects imitation accuracy

Environment samples are expensive!



Some numbers to crunch on...

Property	CartPole-v1	Hopper-v2	AirSim-v0
Dimension (state, action)	(4, 2)	(11, 3)	(6, 3)
Timesteps (GAIL)	3e5	1e6	1e6
Episode length (max)	500	1000	400 (human), 100 (RL)
Training time	20 minutes	2 hours	36 hours (at 4x)
Time/env interaction	4 ms	7.2 ms	129.6 ms
Time/episode	2 s	7.2 s	17.1 s (human), 4.3 s (RL)
Clock speed	Processor (4.8GHz)	Processor (4.8GHz)	4 x real time
Cumulative mean reward	Converged	Converged	Did not converge

API call was not received, entering hover mode for safety Collision#250 with Ground_4 - ObjID 148 requestip/Control was successful Collision Count:90 ClockSpeed config. actual: 4.000000, 3.989193

Sections

- 1. Introduction to Imitation Learning
- 2. Application 1: Autonomous UAV Landing
- 3. Application 2: Minecraft
- 4. Conclusions and Future Work

MineRL: Chopping trees and mining a Diamond in Minecraft

MineRL Competition: NeurIPS 2020

- Lack of large-scale imitation learning datasets
- MineRL: a large-scale dataset of seven different tasks on Minecraft (60 mil pairs)

Why Minecraft:

- Open-world env, sparse rewards, many innate task hierarchies and sub-goals
- 90 million monthly active users, easy to collect a large-scale dataset
- Env simulator available: Microsoft Malmo

MineRL Competition: Description

- Competition on sample-efficient reinforcement learning using human priors
- Address two crucial challenges in RL. Solving hierarchical environments with
 - Sparse rewards
 - Long time horizon
- Develop algorithms to mine a Diamond object in Minecraft using limited
 - Train time (4 days)
 - Compute (single GPU)
 - Samples from the environment simulator (8 million)

MineRL Competition: Solution approaches

- "...highlight a variety of research challenges, including open-world multi-agent interactions, long-term planning, vision, control, navigation, and explicit and implicit subtask hierarchies"
- Want to avoid massive datasets and hand-engineered features
- Complex, hierarchical, sparsely-rewarded task that demands use of:
 - Efficient exploration techniques
 - Training with human priors (e.g. fD algorithms) \square
 - Reward shaping using IL techniques

MineRL Competition: Details

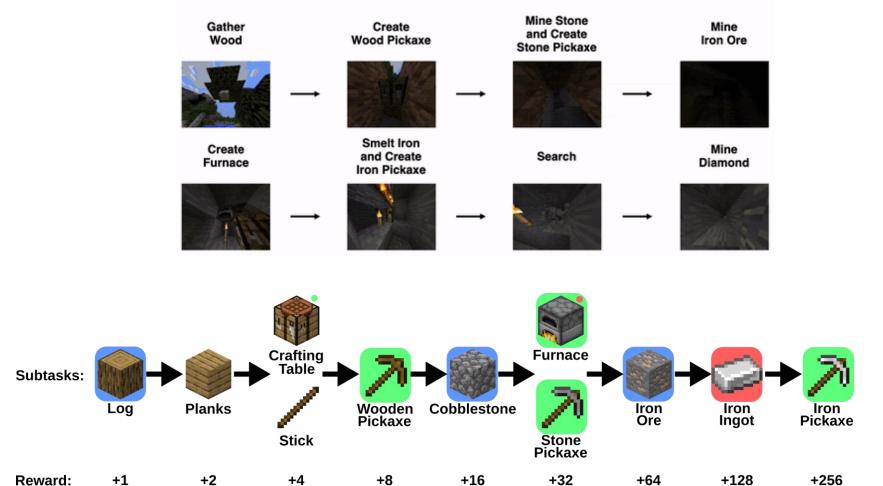
- Two competition tracks:
 - Demonstrations and Environment: MineRL dataset + 8M env interactions ☑
 - Demonstrations Only: MineRL dataset only

- What's new from 2019: Vectorized state, action space that **obfuscates** the agent's actions
 - Prevent participants from using domain knowledge
 - State: images + 1-D vector containing comprehensive set of features from the game
 - Actions: 1-D vector containing keyboard presses, mouse movements (pitch, yaw), player
 GUI interactions, and agglomerative actions such as item crafting

Visualizing the MineRL envs & dataset

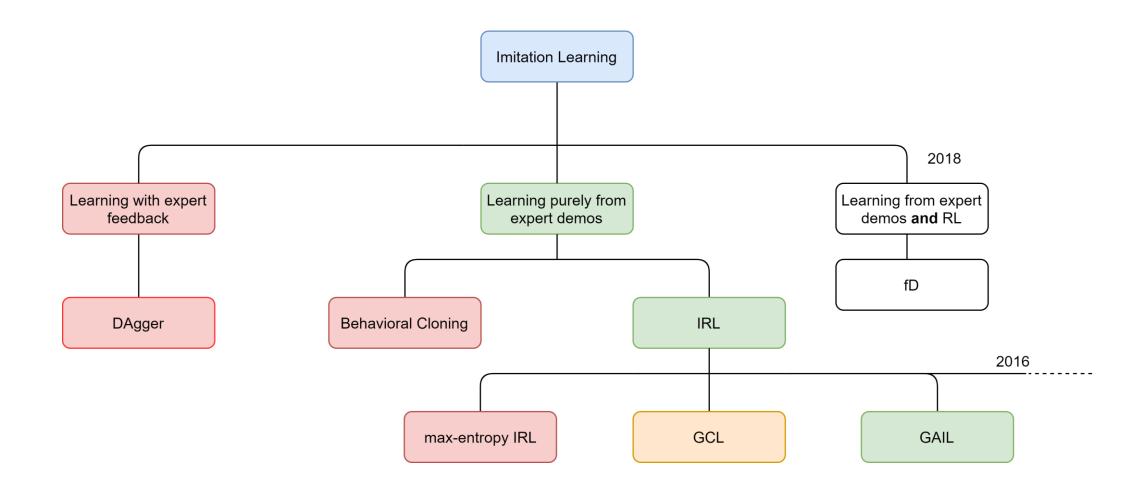
MineRLTreeChopVectorObf-v0: <u>https://youtu.be/q9DtmFJMc5I</u> MineRLObtainDiamondVectorObf-v0: <u>https://youtu.be/mexGyw1PoT0</u>

Obtain Diamond: Tasks and Rewards



The stages of obtaining a diamond.

RL with human priors (**RL** + **IL**!)

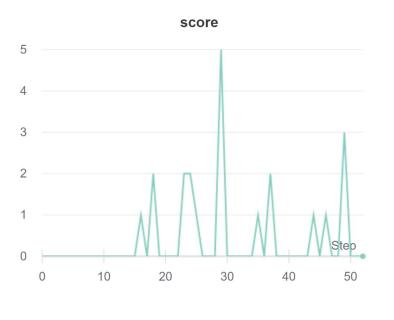


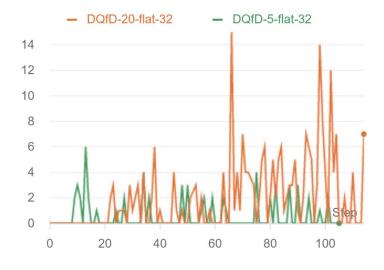
Tools

- RL library: Medipixel 0.10
- Framework: Pytorch 1.3.1
- Hyperparameters (HPs): Medipixel 0.10
- Results (train score vs episodes, test score): W&B 0.10

DQN (RL) vs DQfD (RL+IL)

MineRLTreeChopVectorObf-v0: <u>https://youtu.be/YDpVRyZndCg</u> MineRLObtainDiamondVectorObf-v0: <u>https://youtu.be/b-SGp7PKbxM</u>

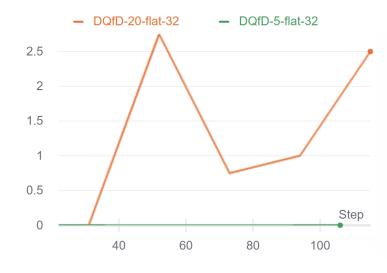




DQN

DQfD

avg test score



Submitted to MineRL Competition: NeurIPS 2020

85764 prabhasak submitted 0.000 0.000 RL+ Thu, 1 Oct View Code

∆ #	Participants	Media	Reward	N/A	tags	Entries
• 01	NoActionWasted	-	9.64	0.0	IL	15
• 02	michal_opano	-	9.29	0.0	IL	11
▲ 03	CU-SF	-	6.47	0.0	RL+ IL	12
▲ 04	HelloWorld	-	6.01	0.0	RL+ IL	7
• 05	NuclearWeapon	-	4.34	0.0	RL+ IL	7

Sections

- 1. Introduction to Imitation Learning
- 2. Application 1: Autonomous UAV Landing
- 3. Application 2: Minecraft
- 4. Conclusions and Future Work

CONCLUSIONS

- Need sample-efficient learning for complex, long-horizon tasks
- IL (GAIL) is a sample-efficient approach to learn from demonstrations
- IL can be used to imitate (even suboptimal) experts from sparsely-rewarded environments
 - Requires smooth experts and careful HP tuning for perfect imitation
- Application 1: Designed a novel method of autonomous UAV landing (simulation)
- Application 2: Discussed potential of IL + RL on a complex, sparse, long-horizon, hierarchical task

THANK YOU!

TEXAS A&M UNIVERSITY Engineering

