
1Learning from Demonstrations

Student: Prabhasa Kalkur
Advisor: Dr. Dileep Kalathil

Learning from Demonstrations:
Applications to Autonomous UAV Landing

Oct 05, 2020

2Learning from Demonstrations

What is imitation learning?

Learning to imitate from expert behavior

Sample-efficient learning: learn behavior from as little expert data as possible

3Learning from Demonstrations

What is the presentation about?

• Motivate the need for sample-efficient methods for learning behavior

• Pick Generative Adversarial Imitation Learning (GAIL) as our algorithm

• Apply GAIL to the sparsely-rewarded task of landing a drone (simulation)

4Learning from Demonstrations

Reinforcement Learning

• 𝑠, 𝑠′ ∈ 𝑆, 𝑎 ∈ 𝐴. Consider tuple [𝑺, 𝑨, 𝑷 𝒔′ 𝒔, 𝒂 , 𝑹 𝒔, 𝒂 , 𝛾, 𝐻], define a policy (model) 𝜋 ∶ 𝑆 → 𝐴

– Reinforcement Learning (RL): find an optimal 𝜋 that maximizes σ𝑡=0
∞ 𝛾𝑡𝑅𝑡*

Rollouts: (𝑆, 𝐴) from 𝜋*

true reward/cost/score

Performance metrics

100 episodes of policy:

95/100 successful

Reward (mean, std): (-175, 50)

5Learning from Demonstrations

Organization of the talk

1. Need for sample-efficiency

2. Introduction to Imitation Learning

3. Application: Autonomous UAV Landing

4. Conclusions and Future Work

6Learning from Demonstrations

Sections

1. Need for sample-efficiency

2. Introduction to Imitation Learning

3. Application: Autonomous UAV Landing

4. Conclusions and Future Work

7Learning from Demonstrations

Why study imitation learning?

1. Rewards obvious in computer games: maximize score

– Not so obvious in real-word scenarios: use a proxy instead

vs

8Learning from Demonstrations

Why study imitation learning?

2. Can be easier to demonstrate desired behavior

Levine et al. "Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection."

9Learning from Demonstrations

Why study imitation learning?

3. Modern Deep-RL requires exponentially increasing number of samples: sample-inefficient

– Challenging for the AI community to reproduce SOTA results

Go: AlphaGo Zero Dota 2: OpenAI Five

10Learning from Demonstrations

Why study imitation learning?

3. Modern Deep-RL requires exponentially increasing number of samples

– Not practical, especially when env samples are expensive, and compute is limited

– One approach: use sample-efficient methods like Imitation Learning

Many competitions trying to promote compute and sample-efficient learning:

– NeurIPS 2019: Game of Drones

– NeurIPS 2019 & 2020: MineRL Challenge

11Learning from Demonstrations

Why study imitation learning?

4. How humans and animals fundamentally learn behavior

Picture credits: Sapana

12Learning from Demonstrations

Sections

1. Need for sample-efficiency

2. Introduction to Imitation Learning

3. Application: Autonomous UAV Landing

4. Conclusions and Future Work

13Learning from Demonstrations

RL algorithms

• 𝑠, 𝑠′ ∈ 𝑆, 𝑎 ∈ 𝐴. For MDP 𝑺, 𝑨,𝑷 𝒔′ 𝒔, 𝒂 , 𝑹 𝒔, 𝒂 , 𝛾 , define a policy 𝝅 ∶ 𝑆 → 𝐴

– Goal: find an optimal 𝝅 that maximizes σ𝒕=𝟎
∞ 𝜸𝒕𝑹𝒕

– Metric: (i) Reward convergence, (ii) Policy evaluation (testing)

*

policy evaluation
reward convergence

14Learning from Demonstrations

IL algorithms

• 𝑠, 𝑠′ ∈ 𝑆, 𝑎 ∈ 𝐴. For MDP [𝑺, 𝑨,𝑷 𝒔′ 𝒔, 𝒂 , 𝑹 𝒔, 𝒂 , 𝛾], define a policy 𝝅 ∶ 𝑆 → 𝐴

– Goal: given 𝝉 = (𝒔𝟎, 𝒂𝟎, 𝒔𝟏, 𝒂𝟏,…, 𝒔𝒕, 𝒂𝒕, …, 𝒔𝑻) generated from a 𝝅 , extract its 𝑹 𝒔, 𝒂

– Metric: Reward evaluation (?)

*

reward evaluation

Flowchart credits: Sapana

15Learning from Demonstrations

IL algorithms

• 𝑠, 𝑠′ ∈ 𝑆, 𝑎 ∈ 𝐴. For MDP [𝑺, 𝑨,𝑷 𝒔′ 𝒔, 𝒂 , 𝑹 𝒔, 𝒂 , 𝛾], define a policy 𝝅 ∶ 𝑆 → 𝐴

– Goal: given 𝝉 = (𝒔𝟎, 𝒂𝟎, 𝒔𝟏, 𝒂𝟏,…, 𝒔𝒕, 𝒂𝒕, …, 𝒔𝑻) generated from a 𝝅 , extract its 𝑹 𝒔, 𝒂

– Metric: Reward evaluation (?)

*

reward evaluation

16Learning from Demonstrations

“predicted true reward”

policy optimizerreward optimizer

17Learning from Demonstrations

Imitation Learning approaches

Ho et. al., 2016

Finn et. al., 2016Ziebart et. al. 2008

Ross et. al., 2011

Generative Adversarial Imitation Learning (GAIL) is the SOTA IL algorithm

18Learning from Demonstrations

Some questions…

1. How does imitation accuracy scale with problem dimensionality and demo data?

2. How ‘smooth’ are the learned policies compared to the expert policy?

3. Can behaviors with sparse rewards be learned? At what cost?

4. Can GAIL imitate suboptimal experts? At what cost?

5. Can GAIL generalize?

Let us learn how to imitate a simple control task: balance an inverted pendulum!

19Case Studies: OpenAI Gym and MuJoCo

Problem setup

Train RL -> rollout expert -> Train GAIL -> policy evaluation (test)

Goal: GAIL should be able to ‘imitate’ expert (optimal/suboptimal?)

Discuss: imitation accuracy, sample efficiency, effect of reward quality on learning

• Expert trajectories / rollout / demonstrations: sample demos [5, 10, 20]

• Policy evaluation / rollout / testing: Check policy performance for 100 episodes

• Task solved each episode: True reward for 100 consecutive episodes during training

20Case Studies: OpenAI Gym and MuJoCo

Tools

• RL library: Stable Baselines 2.10

• Framework: TensorFlow 1.14

• Hyperparameters (HPs): RL Baselines Zoo, etc.

• Performance metrics (learned reward vs episodes, test scores): Tensorboard 1.14, W&B 0.10

RL/IL Algorithms

• SAC – Soft Actor-Critic (optimal experts)

• TRPO – Trust Region Policy Optimization (policy optimizer for GAIL)

• BC - Behavioral Cloning* (comparison with GAIL)

*with policy: “MlpPolicy” [100, 100], optimizer: Adam, batch size: 256, train-val: 70-30

21Learning from Demonstrations

OpenAI Gym and MuJoCo

• Gym: “Toolkit for developing and comparing reinforcement learning algorithms”

• Platform for teaching agents to perform simulated tasks under a true reward

• E.g. Atari games, Robotic manipulation, control tasks

• MuJoCo: “A physics engine that does very detailed, efficient simulations with contacts”

• E.g. Continuous control tasks like hopping, walking, or running

• Why is this important? Standard benchmark tasks for testing RL, IL algorithms

22Case Studies: OpenAI Gym and MuJoCo

CartPole-v1Pendulum-v0

LunarLanderCts-v2 Hopper-v2

23Case Studies: OpenAI Gym and MuJoCo

The Pendulum-v0 environment

Properties Description

State space (cts, dim = 3) Cosine, sine of angle θ [-1, 1], θ0 [-8, 8]

Action space (cts, dim = 1) Joint effort [-2, 2]

Reward - (θ2 + 0.1*θ0
2 + 0.001*action2), dense

Termination / Horizon 200 steps, finite

Solved / learned task defined as -200 mean reward over 100 consecutive
episodes of training

Expert Trajectories for IL [5, 10, 20] with reward (mean, var): (-147, 84)

24Case Studies: OpenAI Gym and MuJoCo

Pendulum-v0: GAIL and BC

GAIL learns to achieve true cost AND imitate expert

GAIL score (mean, var) consistent over # demos – sample-efficient

BC improves over # demos, but only for optimal experts

reward convergence policy evaluation

true cost

25Case Studies: OpenAI Gym and MuJoCo

Imitating suboptimal experts

Data Optimal Solved Score Mean length Success

Expert No 475 (402, 134) 402 63/100

GAIL policy No 475 (410, 178) 411 59/100

• GAIL on suboptimal CartPole-v1 expert

• Suboptimal experts can be imitated!

26Case Studies: OpenAI Gym and MuJoCo

Some questions…

1. How does imitation accuracy scale with dimensionality, demo data? GAIL sample-efficient (low-

dim)

2. How ‘smooth’ are the learned policies compared to the expert policy? Demo-dependent

3. Can behaviors with sparse rewards be learned? At what cost?

4. Can GAIL imitate suboptimal experts? At what cost? BC cannot. GAIL can, with the right HPs

5. Can GAIL generalize?

Answered for a low-dimensional, densely-rewarded, finite-horizon control task. Let’s try harder!

27Learning from Demonstrations

Sections

1. Need for sample-efficiency

2. Introduction to Imitation Learning

3. Application: Autonomous UAV Landing

4. Conclusions and Future Work

AirSim: Autonomous UAV
Navigation and Landing

APPLICATION 1

29Application 1: Autonomous UAV maneuver & landing

Landing on ships

Landing Zone Ground Ship

Space Large Limited

Motion None 6 DOF

Visual
References

More Less

Alternate L/D
Places

Many Less

Weather Affected Extremely
affected

Slide credits: Bochan

30Application 1: Autonomous UAV maneuver & landing

Common Approaches

An approach toward visual autonomous ship board landing of a VTOL UAV
by J.L. Sanchez, Journal of Intelligent & Robotic System, 2014

Computer vision-based for autonomous landing
by G.Xu, Pattern Recogn.Lett., 2009

Flytdock by flytbase company, June 8, 2018

Slide credits: Bochan

ALL of them are looking at landing spot

31Application 1: Autonomous UAV maneuver & landing

How does a pilot approach the ship?

Slide credits: Bochan

32Learning from Demonstrations

CONTRIBUTIONS

Landing a UAV on a ship without looking at landing spot (simulation)

Refer to a visual cue for positioning, just like a pilot

Bring pilot’s intuition and flying skills using imitation learning (GAIL)

33Application 1: Autonomous UAV maneuver & landing

Environment simulator

• Need a high-fidelity simulator environment for Unmanned Aerial Vehicles (UAVs)

• Microsoft AirSim 2.0

– “An open source, cross platform simulator built on Unreal Engine”

– Can integrate a flight controller for collecting demonstrations

– Community support (NeurIPS 2019)

• Designed a custom ship deck

– Landing pad, visual cue

– Drone from AirSim

34Application 1: Autonomous UAV maneuver & landing

Model Concept

2M

10 M

Component &
Dimensions

Distance with respect to
origin (world coordinate

system)

Drone (1mx1m) At origin

Landing Pad
(Centre)

(4m X 4m)
X= 15 m, Y= 0, Z= 0

Visual Cue
(Centre)

(1m X 0.2m)
X= 25 m, Y= 0, Z= 0.3 m

X (forward)

Y (lateral)

Z (vertical)

35Application 1: Autonomous UAV maneuver & landing

X (forward)

Y (lateral)

Z (vertical)

AirSim environment: Front & Side view

Drone (0, 0, -4)

Landing pad

(15, 0, -0.1)

Visual cue

(25, 0, -0.3)

36Application 1: Autonomous UAV maneuver & landing

The AirSim-v0 environment

Parameters Details

State space (cts, dim = 6)

Drone position, velocity (X, Y, Z). Goal: 4x4 square around [15, 0, -0.1]

Position: X [0, 17], Y [-2, 2], Z [-5, 0] – negative Z upwards
Velocity: X [-1, 3], Y [-1, 1], Z [-4, 4]

Action space (cts, dim = 3) [Pitch (rad), Roll (rad), Throttle (0, 1)]. Yaw zero. Negative pitch down

Termination / Horizon Timeout (finite/infinite), out of bounds, below visual cue, crash, land

• Want to able to classify expert demos as optimal/suboptimal. Assign a simple proxy reward

• Higher reward for getting closer to landing pad, penalty for termination without reaching goal

37Application 1: Autonomous UAV maneuver & landing

Generating human expert data

• Xbox controller:

– Extremely sensitive

– Cannot make custom calibration

• “Taranis x9d” flight controller:

– Smoother data logging

– Disabled yaw from the controller

• Collected 120 demonstrations of landing UAV

– Started at random positions inside the box

– Maneuver: different heights and at varying speeds

– Collected (state, action, reward) pairs using AirSim APIs

39Application 1: Autonomous UAV maneuver & landing

Human expert demos – stats

Expert Optimal Solved Expert score
(mean, std)

Expert length

Optimal Yes 120/120 (1141, 27) 362

Suboptimal No 132/140 (1116, 284) 307

• True reward (for proxy function): 1000

• Task: Train GAIL on expert samples [5, 10, 20, 50, 120] to learn behavior (optimal/suboptimal)

• Video of expert data collection: https://youtu.be/e1noOIhzhQ4

https://youtu.be/e1noOIhzhQ4

40Application 1: Autonomous UAV maneuver & landing

Expert Trajectories: humans

Optimal Suboptimal

GAIL on suboptimal human expert
[20, 50, 120] experts, finite horizon (400 steps, same as expert)

Learned model: https://youtu.be/lUDpZna4uhk

https://youtu.be/lUDpZna4uhk

42Application 1: Autonomous UAV maneuver & landing

AirSim-v0 (IL)
Suboptimal expert

GAIL hyperparameters

• n_timesteps: 2e5

• policy: ‘MlpPolicy’

[128, 128]

• gamma: 0.99

• learning_rate: 3e-4

• timesteps_per_batch: 256

• buffer_size: 1e6
reward convergence

43Application 1: Autonomous UAV maneuver & landing

GAIL on suboptimal human expert

Suboptimal expert GAIL-learned policy

GAIL on optimal human expert
[20, 50, 120] experts, finite horizon (400 steps, same as expert)

Learned model: https://youtu.be/3ilW7LzqI2Y

https://youtu.be/3ilW7LzqI2Y

45Application 1: Autonomous UAV maneuver & landing

AirSim-v0 (IL)
Optimal expert

GAIL hyperparameters

• n_timesteps: 3e5

• policy: ‘MlpPolicy’

[128, 128]

• gamma: 0.99

• learning_rate: 3e-4

• timesteps_per_batch: 256

• buffer_size: 1e6
reward convergence

46Application 1: Autonomous UAV maneuver & landing

GAIL on optimal human expert

Optimal expert GAIL-learned policy

47Application 1: Autonomous UAV maneuver & landing

Conclusions

• GAIL can imitate navigation (point A to point B)

• GAIL can learn suboptimal landings. HP-dependent

• Explanation: landings may be too ‘non-smooth’ for GAIL to learn

• Rendering of learned policy: front-view

• Can we perhaps construct a proxy reward that conveys smoother landings?

• Can RL algorithms learn smoother landings from this proxy?

https://youtu.be/q5w4Vg1mvCM

EXPERT REWARD DESIGN
Can RL learn a ‘smoother’ landing than human expert?

Learned models:

Simple - https://youtu.be/qJJOOOWfYcI

Complex - https://youtu.be/cFpFTDo-V7k

https://youtu.be/qJJOOOWfYcI
https://youtu.be/cFpFTDo-V7k

49Application 1: Autonomous UAV maneuver & landing

Proxy reward function design

1. Simple reward (sparse):

– Increase reward as it gets close to landing pad (1/x)

– Large positive reward if it lands inside the landing pad (+1000)

– Other conditions: -10 (visual cue, out of bounds, crash, timeout)

2. Complex reward (sparse):

– Increase reward as it gets close to landing pad (1/x)

– Scale goal reward according to drone heading, speed (1250-750)

– Other conditions: -10 (visual cue, out of bounds, crash, timeout)

Reward Heatmap

50Application 1: Autonomous UAV maneuver & landing

SAC on AirSim-v0: Proxy rewards

51Application 1: Autonomous UAV maneuver & landing

RL-generated expert demos

Proxy: simple Proxy: complex

52Application 1: Autonomous UAV maneuver & landing

Expert demos: humans vs RL

Optimal Suboptimal Proxy: complex

LANDING: HUMANS vs GAIL vs RL
Change in speed

54Application 1: Autonomous UAV maneuver & landing

Forward speed

Human expert GAIL-learned policy RL expert

55Application 1: Autonomous UAV maneuver & landing

Descent speed

Human expert GAIL-learned policy RL expert

56Application 1: Autonomous UAV maneuver & landing

Summary: humans vs GAIL vs RL

Expert Maneuver type
demonstrated/learned

Optimal Landed Score
(mean, std)

Expert
length

Human: Optimal Hard landing (pilot) Yes 120/120 (1141, 27) 362

Human: Suboptimal Large variance No 132/140 (1116, 284) 307

GAIL: optimal (20 demos) Navigation, *Landing *Yes 84/100 (1048, 292) 80

GAIL: suboptimal (20 demos) Navigation only *No 12/100 (684, 580) 80

SAC: Simple Shortest-path Yes 99/100 (1106, 112) 99

SAC: Complex Smooth landing Yes 97/100 (1265, 225) 94

*Smooth landings crucial for perfect imitation with GAIL

57Application 1: Autonomous UAV maneuver & landing

Some questions…

1. How does imitation accuracy scale with dimensionality, demo data? Sample-efficient

2. How ‘smooth’ are the learned policies compared to the expert policy? smooth if expert is smooth

3. Can sparse rewards be learned? At what cost? Yes, needs >20 demos, tuned HPs

4. Can GAIL imitate suboptimal experts? navigation easy, landing difficult. Tuned HPs

5. Can GAIL generalize? Tried different bounding boxes for optimal expert, GAIL policy. Need tuned HPs

58Application 1: Autonomous UAV maneuver & landing

GAIL: Pros and Cons

• Pros

– Can handle unknown dynamics

– Can scale to large neural network reward functions

– Can perform well on real-world tasks (with an efficient policy optimizer)

• Cons

– Adversarial optimization (GANs) hard to train!

– Requires smooth experts for imitation

– First person demonstrations typically used (no “teaching” as such)

Chelsea Finn, RL Bootcamp, 2016

59Application 1: Autonomous UAV maneuver & landing

Summary

• GAIL can imitate AirSim-v0 human experts. Navigation easy, landing not-so-easy

• RL on proxy rewards can generate smoother landings – necessary for GAIL

– reward 𝜖 space of cost functions explored

• Expensive training time limits number of experiments you can run

• Lack of tuned HPs affects imitation accuracy

60Learning from Demonstrations

ADDRESSING TIME BOTTLENECKS

61Application 1: Autonomous UAV maneuver & landing

Environment samples are expensive!

62Learning from Demonstrations

Some numbers to crunch on…

Property CartPole-v1 Hopper-v2 AirSim-v0

Dimension (state, action) (4, 2) (11, 3) (6, 3)

Timesteps (GAIL) 3e5 1e6 1e6

Episode length (max) 500 1000 400 (human), 100 (RL)

Training time 20 minutes 2 hours 36 hours (at 4x)

Time/env interaction 4 ms 7.2 ms 129.6 ms

Time/episode 2 s 7.2 s 17.1 s (human), 4.3 s (RL)

Clock speed Processor (4.8GHz) Processor (4.8GHz) 4 x real time

Cumulative mean reward Converged Converged Did not converge

63Application 1: Autonomous UAV maneuver & landing

Setting up multiple experiments

64Application 1: Autonomous UAV maneuver & landing

65Learning from Demonstrations

Sections

1. Need for sample-efficiency

2. Introduction to Imitation Learning

3. Application: Autonomous UAV Landing

4. Conclusions and Future Work

66Learning from Demonstrations

CONCLUSIONS

• Need sample-efficient learning for complex, long-horizon tasks

• IL (GAIL) is a sample-efficient approach to learn from demonstrations

• IL can be used to imitate (even suboptimal) experts from sparsely-rewarded environments

– Requires smooth experts and careful HP tuning for perfect imitation

• Application: Designed a novel method of autonomous UAV landing (simulation)

67Learning from Demonstrations

Future Extensions: AirSim

• Learning reward functions with smoothness properties (e.g. WAIL)

• Collecting human expert data with smoother maneuvers, for better imitation

• Complex maneuvers. E.g. side-entry (yaw), landing on a moving platform, wind

• Switch to a quadcopter for learning (Parrot Anafi with Gazebo)

• Multi-agent, transfer learning, and meta-learning methods to learn behaviors that can be

generalized to unknown environments (e.g. point-to-point navigation)

68Learning from Demonstrations

THANK YOU!

