

Learning from Demonstrations: Applications to Autonomous UAV Landing

Student: Prabhasa Kalkur **Advisor:** Dr. Dileep Kalathil

Oct 05, 2020

What is imitation learning?

Learning to imitate from expert behavior

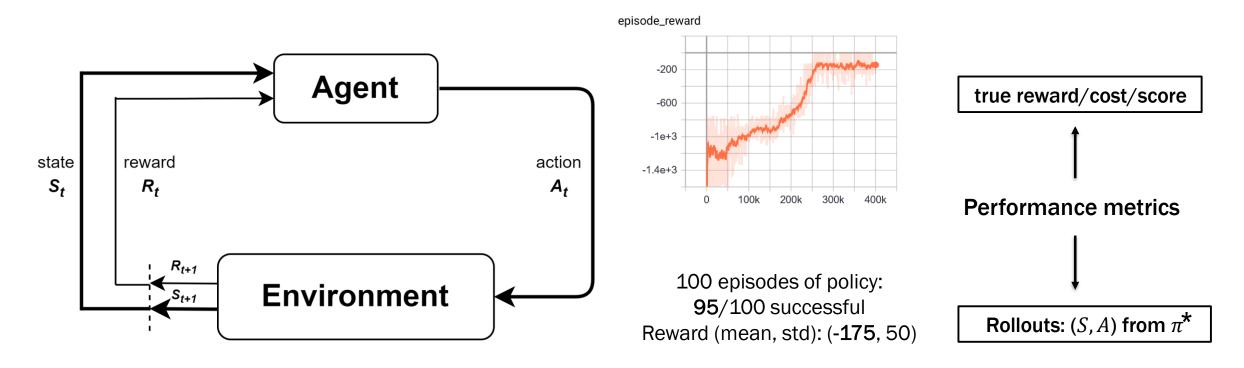
Sample-efficient learning: learn behavior from as little expert data as possible

What is the presentation about?

- Motivate the need for **sample-efficient** methods for learning behavior
- Pick Generative Adversarial Imitation Learning (GAIL) as our algorithm
- Apply GAIL to the **sparsely-rewarded** task of landing a drone (simulation)

Reinforcement Learning

- $s, s' \in S, a \in A$. Consider tuple $[S, A, P(s'|s, a), R(s, a), \gamma, H]$, define a policy (model) $\pi : S \to A$
 - Reinforcement Learning (RL): find an optimal π^* that maximizes $\sum_{t=0}^{\infty} \gamma^t R_t$



Organization of the talk

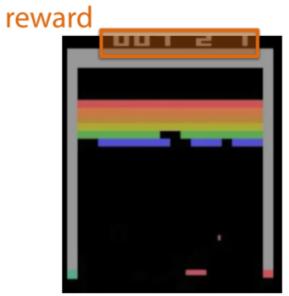
- 1. Need for sample-efficiency
- 2. Introduction to Imitation Learning
- 3. Application: Autonomous UAV Landing
- 4. Conclusions and Future Work

Sections

1. Need for sample-efficiency

- 2. Introduction to Imitation Learning
- 3. Application: Autonomous UAV Landing
- 4. Conclusions and Future Work

- 1. Rewards obvious in computer games: maximize score
 - Not so obvious in real-word scenarios: use a proxy instead



Mnih et al. '15

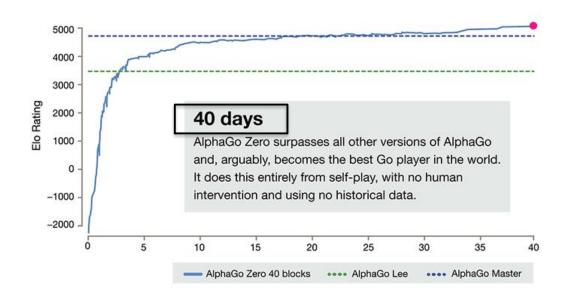
VS

2. Can be easier to **demonstrate** desired behavior

Levine et al. "Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection."

3. Modern Deep-RL requires exponentially increasing number of samples: sample-inefficient

- Challenging for the AI community to reproduce SOTA results



	OPENAI 1V1 Bot	OPENAI FIVE
CPUs	60,000 CPU cores on Azure	128,000 preemptible CPU cores on GCP
GPUs	256 K80 GPUs on Azure	256 P100 GPUs on GCP
Experience collected	~300 years per day	~180 years per day (~900 years per day counting each hero separately)
		· · · ·
Size of observation	~3.3 kB	~36.8 kB
Size of observation Observations per second of gameplay	~3.3 kB 10	~36.8 kB 7.5
Observations per		

Dota 2: OpenAl Five

- 3. Modern Deep-RL requires exponentially increasing number of samples
 - Not practical, especially when env samples are expensive, and compute is limited
 - One approach: use sample-efficient methods like Imitation Learning

Many competitions trying to promote compute and sample-efficient learning:

- NeurIPS 2019: Game of Drones
- NeurlPS 2019 & 2020: MineRL Challenge

4. How humans and animals fundamentally learn behavior

Picture credits: Sapana

Sections

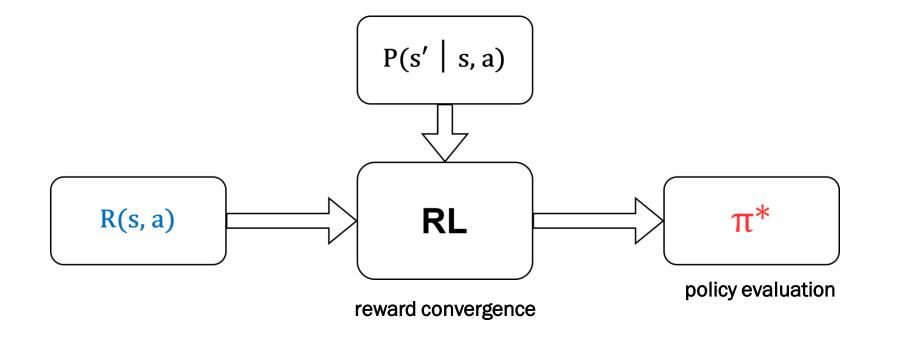
1. Need for sample-efficiency

2. Introduction to Imitation Learning

- 3. Application: Autonomous UAV Landing
- 4. Conclusions and Future Work

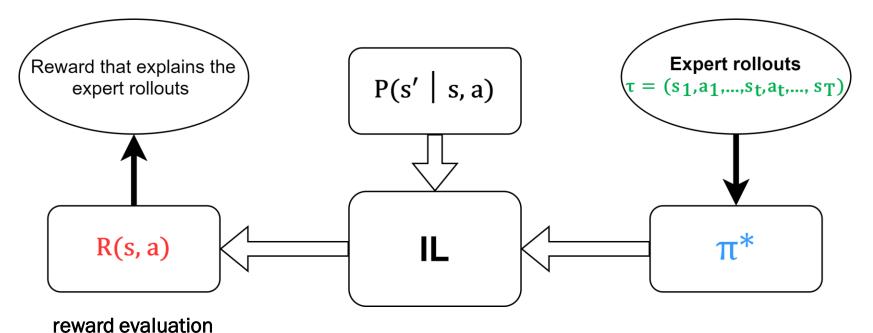
RL algorithms

- $s, s' \in S, a \in A$. For MDP $[S, A, P(s'|s, a), R(s, a), \gamma]$, define a policy $\pi : S \to A$
 - Goal: find an optimal π^* that maximizes $\sum_{t=0}^{\infty} \gamma^t R_t$
 - **Metric:** (i) Reward convergence, (ii) Policy evaluation (testing)



IL algorithms

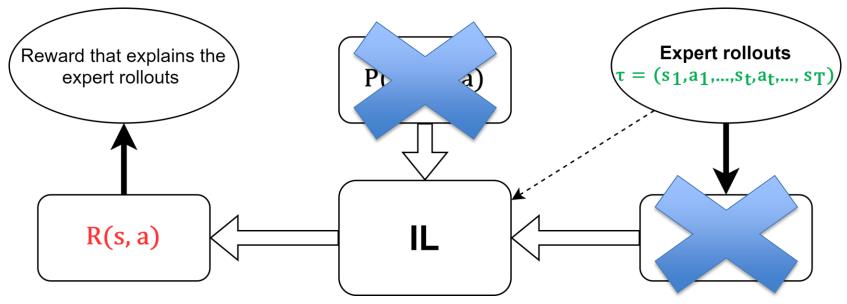
- $s, s' \in S, a \in A$. For MDP $[S, A, P(s'|s, a), R(s, a), \gamma]$, define a policy $\pi : S \to A$
 - Goal: given $\tau = (s_0, a_0, s_1, a_1, \dots, s_t, a_t, \dots, s_T)$ generated from a π^* , extract its R(s, a)
 - **Metric:** Reward evaluation (?)



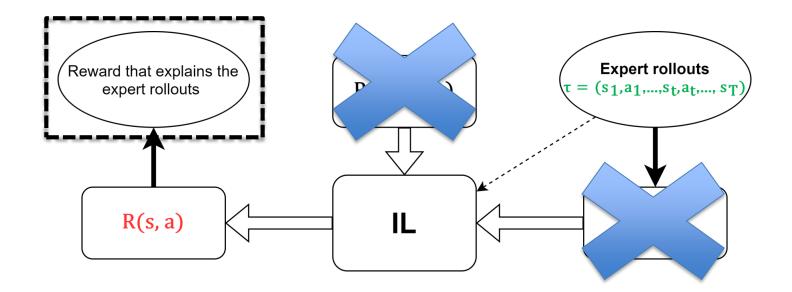
Flowchart credits: Sapana

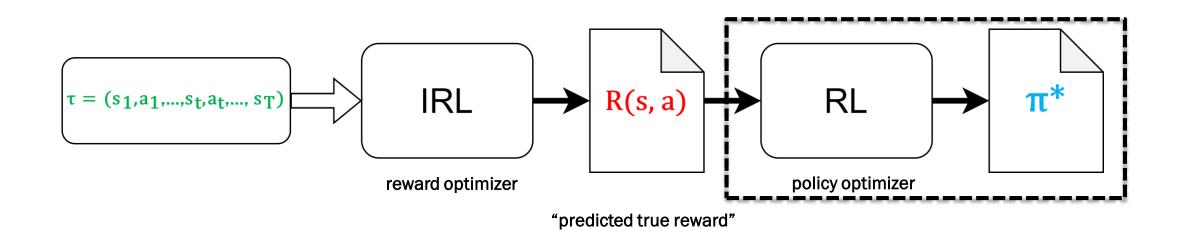
IL algorithms

- $s, s' \in S, a \in A$. For MDP $[S, A, P(s'|s, a), R(s, a), \gamma]$, define a policy $\pi : S \to A$
 - Goal: given $\tau = (s_0, a_0, s_1, a_1, \dots, s_t, at, \dots, s_T)$ generated from a π^* , extract its R(s, a)
 - **Metric:** Reward evaluation (?)

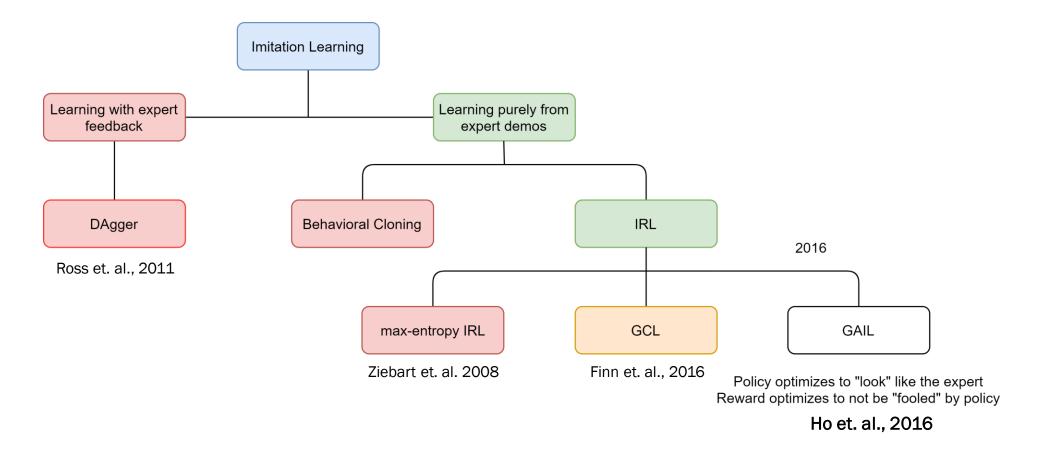


reward evaluation





Imitation Learning approaches



Generative Adversarial Imitation Learning (GAIL) is the SOTA IL algorithm

Some questions...

- 1. How does imitation accuracy scale with problem dimensionality and demo data?
- 2. How 'smooth' are the learned policies compared to the expert policy?
- 3. Can behaviors with sparse rewards be learned? At what cost?
- 4. Can GAIL imitate suboptimal experts? At what cost?
- 5. Can GAIL generalize?

Let us learn how to imitate a simple control task: balance an inverted pendulum!

Problem setup

Train RL -> rollout expert -> Train GAIL -> policy evaluation (test)

Goal: GAIL should be able to 'imitate' expert (optimal/suboptimal?)

Discuss: imitation accuracy, sample efficiency, effect of reward quality on learning

- Expert trajectories / rollout / demonstrations: sample demos [5, 10, 20]
- Policy evaluation / rollout / testing: Check policy performance for 100 episodes
- Task solved each episode: True reward for 100 consecutive episodes during training

Tools

- **RL library:** Stable Baselines 2.10
- Framework: TensorFlow 1.14
- Hyperparameters (HPs): RL Baselines Zoo, etc.
- Performance metrics (learned reward vs episodes, test scores): Tensorboard 1.14, W&B 0.10

RL/IL Algorithms

- **SAC** Soft Actor-Critic (optimal experts)
- **TRPO** Trust Region Policy Optimization (policy optimizer for GAIL)
- **BC** Behavioral Cloning* (comparison with GAIL)

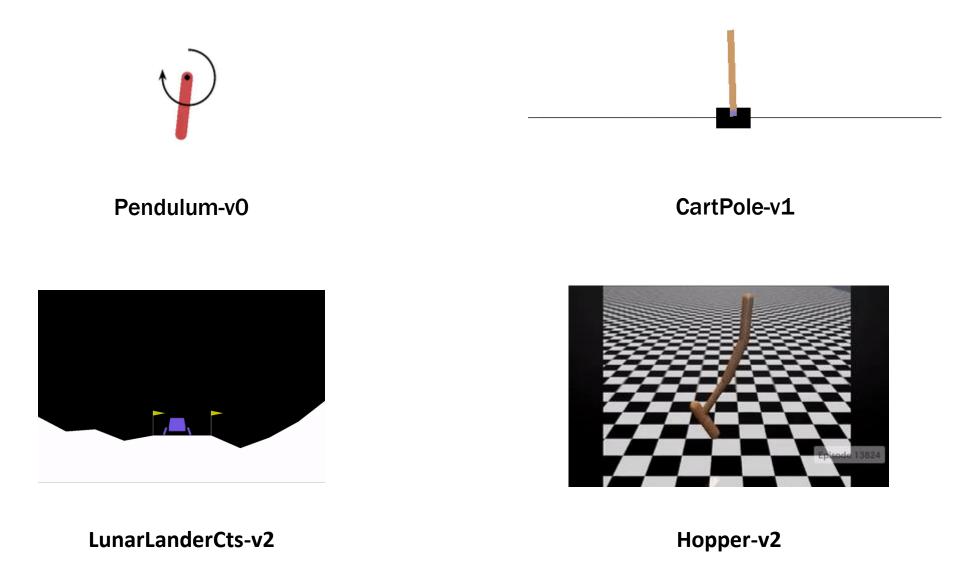
*with policy: "MIpPolicy" [100, 100], optimizer: Adam, batch size: 256, train-val: 70-30

OpenAl Gym and MuJoCo

- **Gym:** "Toolkit for developing and comparing reinforcement learning algorithms"
- Platform for teaching agents to perform simulated tasks **under a true reward**
- E.g. Atari games, Robotic manipulation, control tasks

- **MuJoCo:** "A physics engine that does very detailed, efficient simulations with contacts"
- E.g. Continuous control tasks like hopping, walking, or running

• Why is this important? Standard benchmark tasks for testing RL, IL algorithms

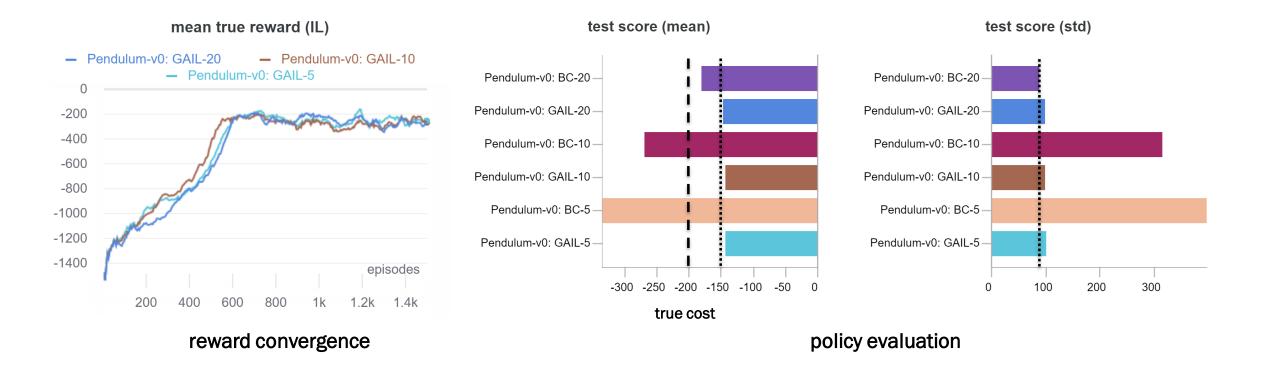


Case Studies: OpenAl Gym and MuJoCo

The Pendulum-v0 environment

Properties	Description
State space (cts, dim = 3)	Cosine, sine of angle θ [-1, 1], θ_0 [-8, 8]
Action space (cts, dim = 1)	Joint effort [-2, 2]
Reward	- $(\theta^2 + 0.1^* \theta_0^2 + 0.001^* \text{action}^2)$, dense
Termination / Horizon	200 steps, finite
Solved / learned task	defined as -200 mean reward over 100 consecutive episodes of training
Expert Trajectories for IL	[5, 10, 20] with reward (mean, var): (-147, 84)

Pendulum-v0: GAIL and BC

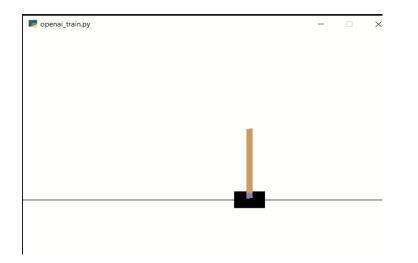


GAIL learns to achieve true cost AND imitate expert GAIL score (mean, var) consistent over # demos – sample-efficient BC improves over # demos, but only for optimal experts

Imitating suboptimal experts

Data	Optimal	Solved	Score	Mean length	Success
Expert	No	475	(402, 134)	402	63 /100
GAIL policy	No	475	(410, 178)	411	59 /100

- GAIL on suboptimal CartPole-v1 expert
- Suboptimal experts can be imitated!



Some questions...

- How does imitation accuracy scale with dimensionality, demo data? GAIL sample-efficient (lowdim)
- 2. How 'smooth' are the learned policies compared to the expert policy? **Demo-dependent**
- 3. Can behaviors with sparse rewards be learned? At what cost?
- 4. Can GAIL imitate suboptimal experts? At what cost? BC cannot. GAIL can, with the right HPs
- 5. Can GAIL generalize?

Answered for a low-dimensional, densely-rewarded, finite-horizon control task. Let's try harder!

Sections

- 1. Need for sample-efficiency
- 2. Introduction to Imitation Learning
- 3. Application: Autonomous UAV Landing
- 4. Conclusions and Future Work

AirSim: Autonomous UAV Navigation and Landing

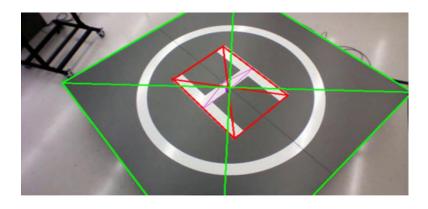
APPLICATION 1

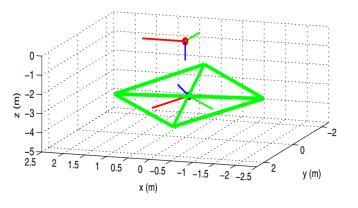
Landing on ships

Landing Zone	Ground	Ship
Space	Large	Limited
Motion	None	6 DOF
Visual References	More	Less
Alternate L/D Places	Many	Less
Weather	Affected	Extremely affected

Slide credits: Bochan

Common Approaches





ALL of them are looking at landing spot

Computer vision-based for autonomous landing by G.Xu, Pattern Recogn.Lett., 2009

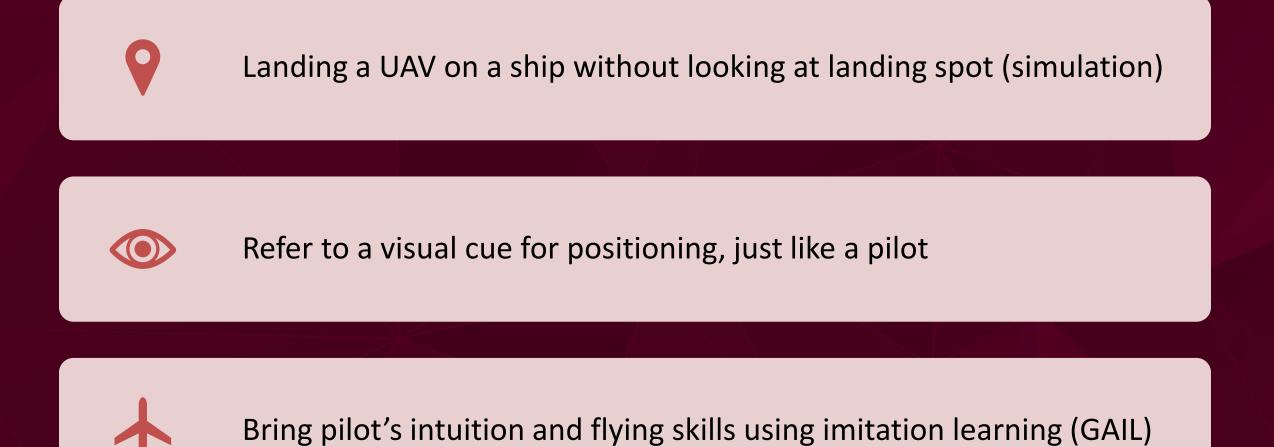
Flytdock by flytbase company, June 8, 2018

Slide credits: Bochan

How does a pilot approach the ship?

Slide credits: Bochan

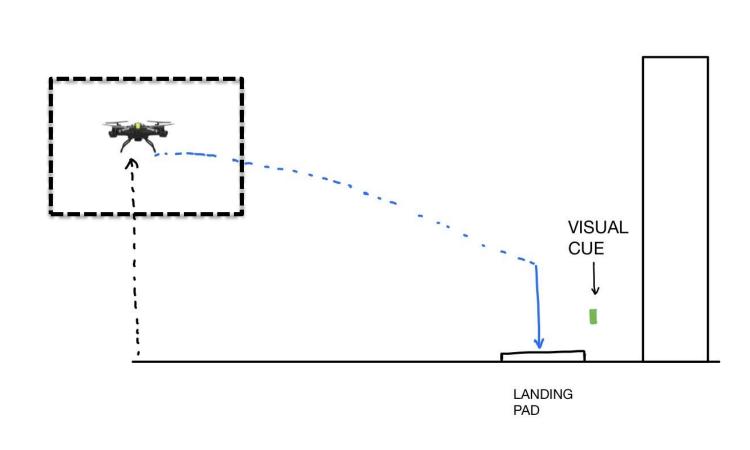
CONTRIBUTIONS



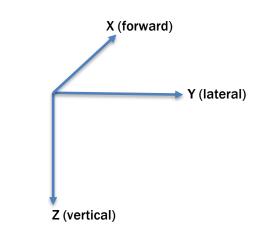
Environment simulator

- Need a high-fidelity simulator environment for Unmanned Aerial Vehicles (UAVs)
- Microsoft AirSim 2.0
 - "An open source, cross platform simulator built on Unreal Engine"
 - Can integrate a flight controller for collecting demonstrations
 - Community support (NeurIPS 2019)
- Designed a custom ship deck
 - Landing pad, visual cue
 - Drone from AirSim

Model Concept



Component & Dimensions	Distance with respect to origin (world coordinate system)
Drone (1mx1m)	At origin
Landing Pad (Centre) (4m X 4m)	X= 15 m, Y= 0, Z= 0
Visual Cue (Centre) (1m X 0.2m)	X= 25 m, Y= 0, Z= 0.3 m



AirSim environment: Front & Side view

The AirSim-v0 environment

Parameters	Details
State space (cts, dim = 6)	Drone position, velocity (X, Y, Z). Goal: 4x4 square around [15, 0, -0.1] Position: X [0, 17], Y [-2, 2], Z [-5, 0] – negative Z upwards
	Velocity: X [-1, 3], Y [-1, 1], Z [-4, 4]
Action space (cts, dim = 3)	[Pitch (rad), Roll (rad), Throttle (0, 1)]. Yaw zero. Negative pitch down
Termination / Horizon	Timeout (finite/infinite), out of bounds, below visual cue, crash, land

- Want to able to classify expert demos as optimal/suboptimal. Assign a simple proxy reward
- Higher reward for getting closer to landing pad, penalty for termination without reaching goal

Generating human expert data

- Xbox controller:
 - Extremely sensitive
 - Cannot make custom calibration
- "Taranis x9d" flight controller:
 - Smoother data logging
 - Disabled yaw from the controller
- Collected 120 demonstrations of landing UAV
 - Started at random positions inside the box
 - Maneuver: different heights and at varying speeds
 - Collected (state, action, reward) pairs using AirSim APIs

alaudek piControl visio subgradsful Joyalish (ERLEX (Bernera): 0.595500, 0.005000, 0.120000, 0.00000, 0.000000000 ICMOSE Angle Ashiole is already anned collision Countril equestApiControl vias subgradful

Anaconda Prompt (Miniconda3) - py., — — X -0.007070789113640785 -0.0663386657834053 0.1200 0000476837158 0.0 0.5954999923706055 0 0.0 0.6341 36438369751 -0.0275372676551342 -0.00759696960449 21875 0.023222249001264572 -0.024524075910449028

-5.133330887474585e-06 -1.6557676792144775 0.1081 6861689090729 8.055675425566733e-05 -0.0026625116 729832735 -0.06487688531364562 2.8654918560913466 e-05

and the second second

\$

13

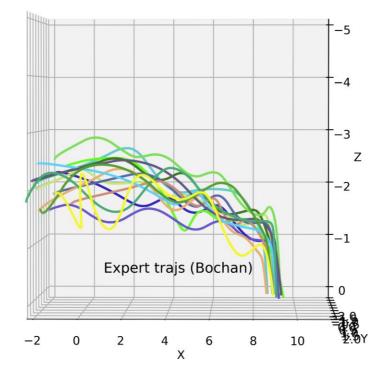
2

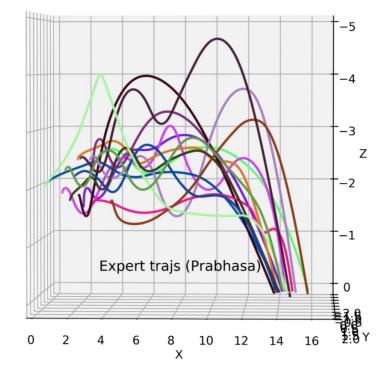
Human expert demos – stats

Expert	Optimal	Solved	Expert score (mean, std)	Expert length	
Optimal	Yes	120/120	(1141, 27)	362	
Suboptimal	No	132/140	(1116, 284)	307	

- True reward (for proxy function): 1000
- Task: Train GAIL on expert samples [5, 10, 20, 50, 120] to learn behavior (optimal/suboptimal)
- Video of expert data collection: https://youtu.be/e1noOlhzhQ4

Expert Trajectories: humans





Optimal

Suboptimal

GAIL on suboptimal human expert

[20, 50, 120] experts, finite horizon (400 steps, same as expert)

Learned model: <u>https://youtu.be/IUDpZna4uhk</u>

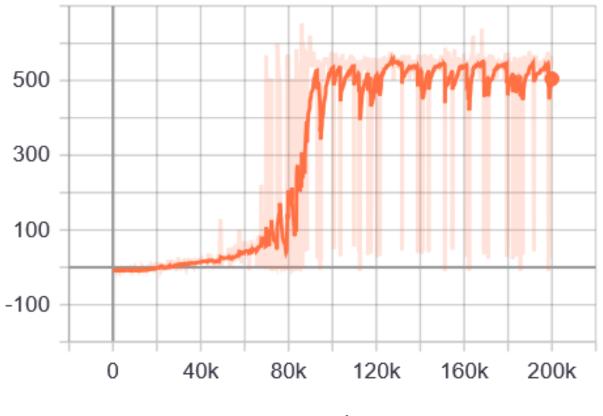
TEXAS A&M UNIVERSITY Engineering

AirSim-v0 (IL) Suboptimal expert

GAIL hyperparameters

- n_timesteps: 2e5
- policy: 'MlpPolicy' [128, 128]
- gamma: 0.99
- learning_rate: 3e-4
- timesteps_per_batch: 256
- buffer_size: 1e6

episode_reward



reward convergence

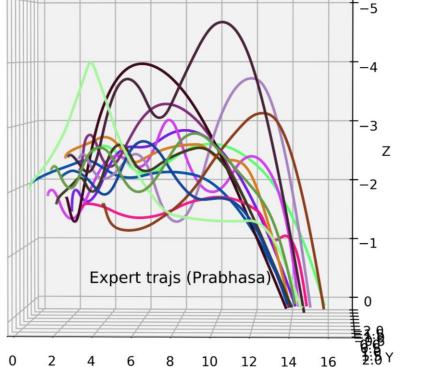
Application 1: Autonomous UAV maneuver & landing

6

0

2

GAIL on suboptimal human expert



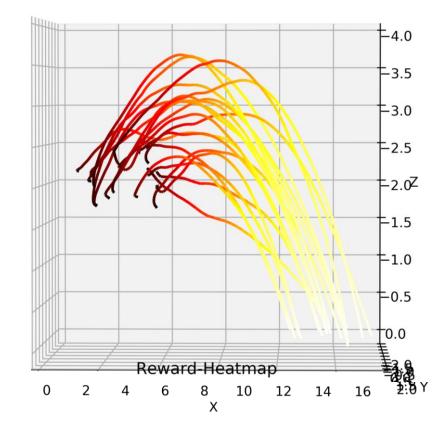
10

8

Х

Suboptimal expert

12 14 16



GAIL-learned policy

TEXAS A&M UNIVERSITY Ă M Engineering

GAIL on optimal human expert

[20, 50, 120] experts, finite horizon (400 steps, same as expert)

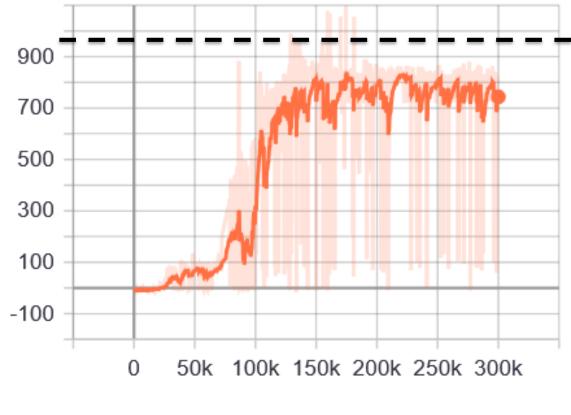
Learned model: https://youtu.be/3ilW7Lzql2Y

AirSim-v0 (IL) Optimal expert

GAIL hyperparameters

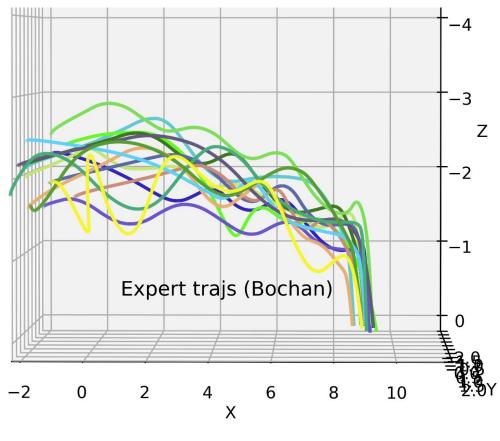
- n_timesteps: 3e5
- policy: 'MlpPolicy' [128, 128]
- gamma: 0.99
- learning_rate: 3e-4
- timesteps_per_batch: 256
- buffer_size: 1e6

episode_reward

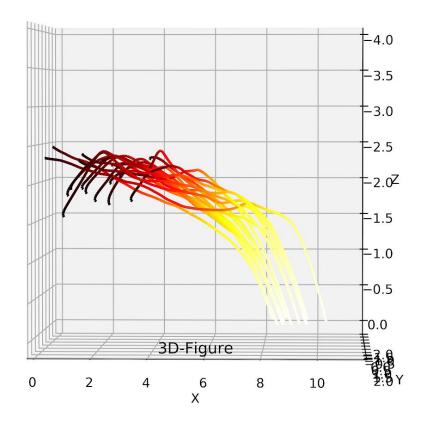


reward convergence

GAIL on optimal human expert



Optimal expert



GAIL-learned policy

Conclusions

- GAIL can imitate **navigation** (point A to point B)
- GAIL can learn suboptimal landings. HP-dependent
- Explanation: landings may be too 'non-smooth' for GAIL to learn
- Rendering of learned policy: <u>front-view</u>

- Can we perhaps **construct a proxy reward** that conveys smoother landings?
- Can RL algorithms learn smoother landings from this proxy?

EXPERT REWARD DESIGN

Can RL learn a 'smoother' landing than human expert?

Learned models:

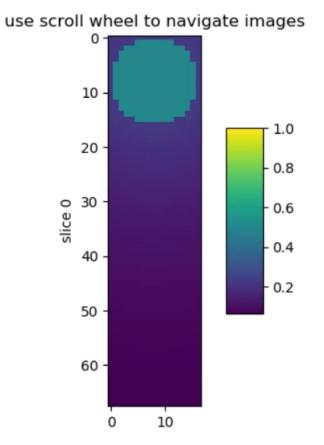
Simple - https://youtu.be/qJJOOOWfYcl

Complex - <u>https://youtu.be/cFpFTDo-V7k</u>

Proxy reward function design

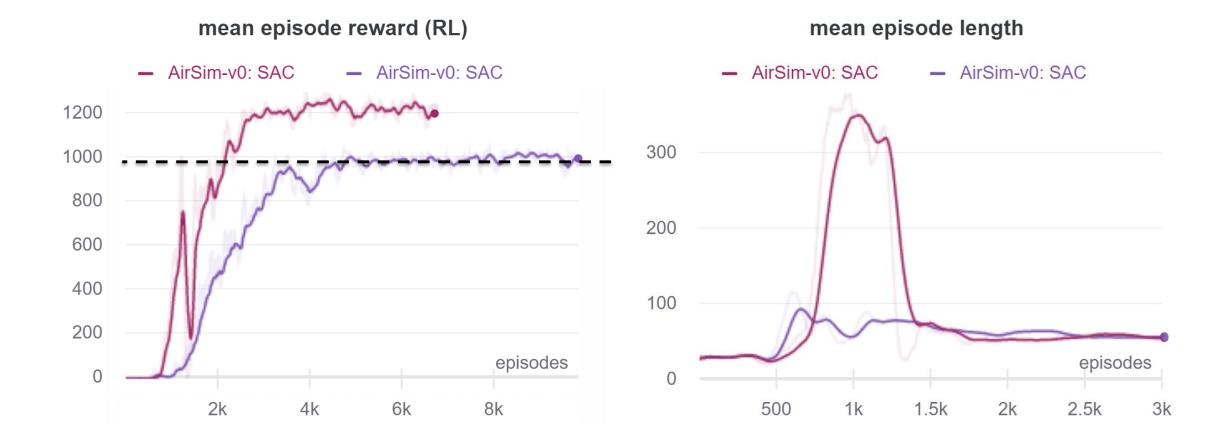
- 1. Simple reward (sparse):
 - Increase reward as it gets close to landing pad (1/x)
 - Large positive reward if it lands inside the landing pad (+1000)
 - Other conditions: -10 (visual cue, out of bounds, crash, timeout)

- 2. Complex reward (sparse):
 - Increase reward as it gets close to landing pad (1/x)
 - Scale goal reward according to drone heading, speed (1250-750)
 - Other conditions: -10 (visual cue, out of bounds, crash, timeout)

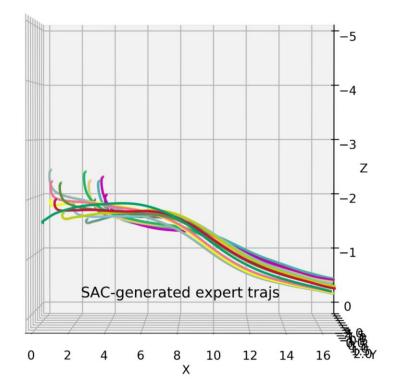


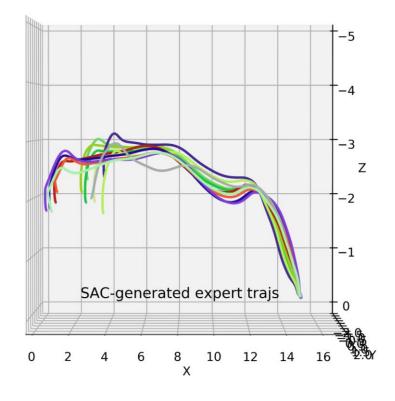
Reward Heatmap

SAC on AirSim-v0: Proxy rewards



RL-generated expert demos

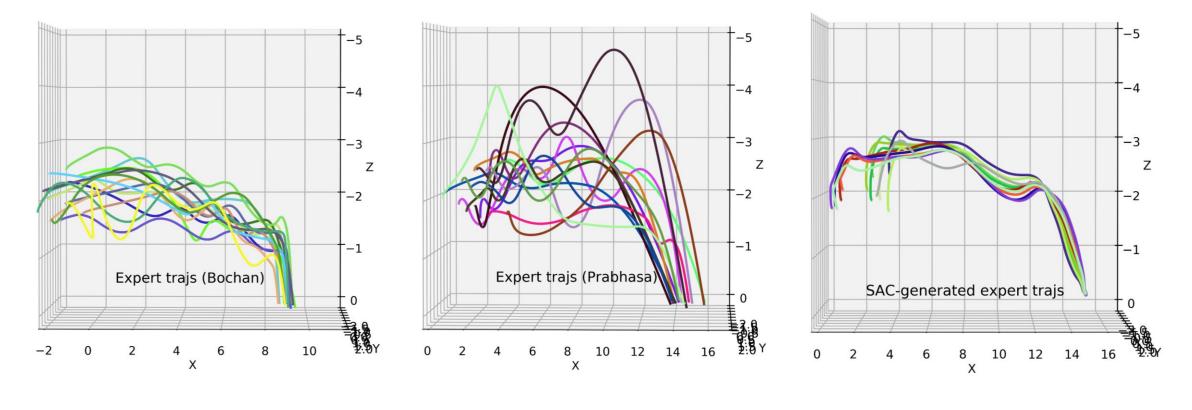




Proxy: simple

Proxy: complex

Expert demos: humans vs RL



Optimal

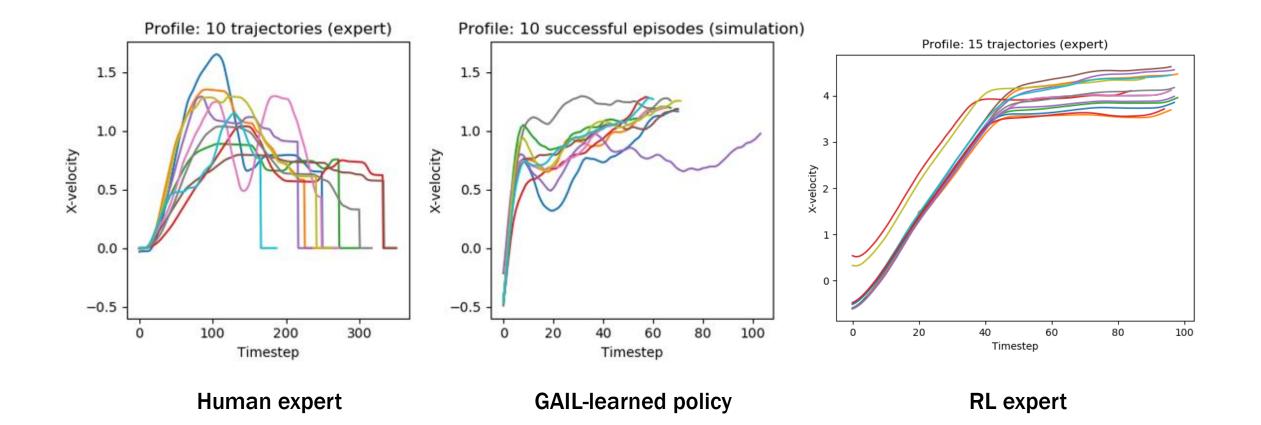
Suboptimal

Proxy: complex

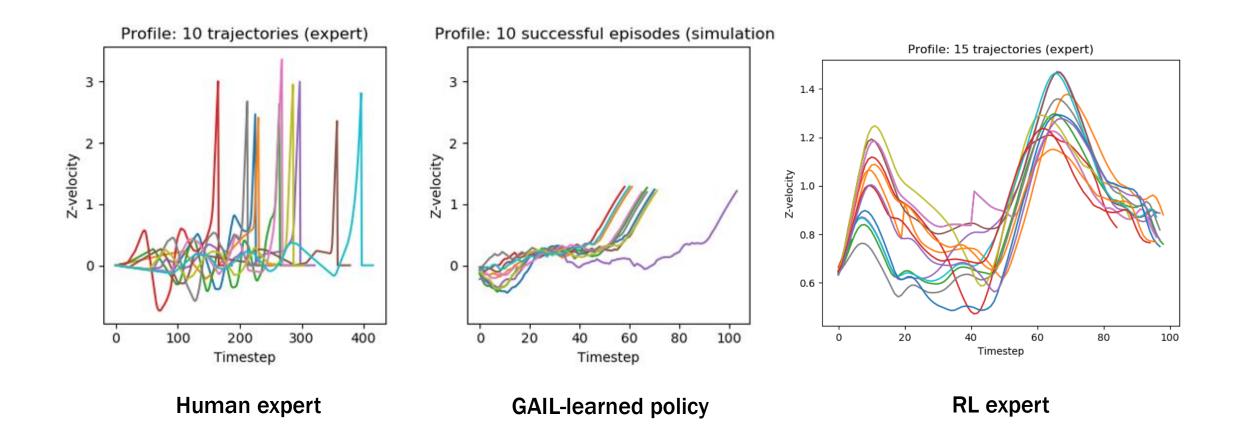
LANDING: HUMANS vs GAIL vs RL

Change in speed

Forward speed



Descent speed



Summary: humans vs GAIL vs RL

Expert	Maneuver type demonstrated/learned	Optimal	Landed	Score (mean, std)	Expert length
Human: Optimal	Hard landing (pilot)	Yes	120/120	(1141, 27)	362
Human: Suboptimal	Large variance	No	132/140	(1116, 284)	307
GAIL: optimal (20 demos)	Navigation, *Landing	*Yes	84/100	(1048, 292)	80
GAIL: suboptimal (20 demos)	Navigation only	*No	12/100	(684, 580)	80
SAC: Simple	Shortest-path	Yes	99/100	(1106, 112)	99
SAC: Complex	Smooth landing	Yes	97/100	(1265, 225)	94

*Smooth landings crucial for perfect imitation with GAIL

Some questions...

- 1. How does imitation accuracy scale with dimensionality, demo data? Sample-efficient
- 2. How 'smooth' are the learned policies compared to the expert policy? **smooth if expert is smooth**
- 3. Can sparse rewards be learned? At what cost? Yes, needs >20 demos, tuned HPs
- 4. Can GAIL imitate suboptimal experts? navigation easy, landing difficult. Tuned HPs
- 5. Can GAIL generalize? Tried different bounding boxes for optimal expert, GAIL policy. Need tuned HPs

GAIL: Pros and Cons

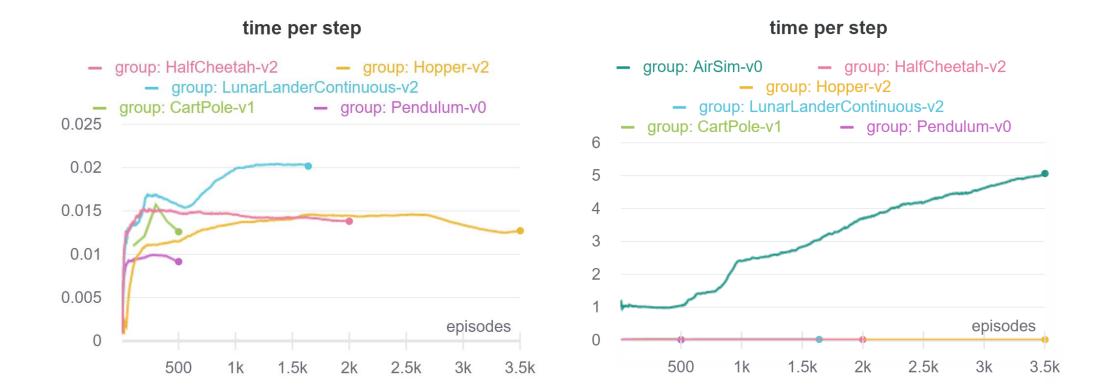
- Pros
 - Can handle unknown dynamics
 - Can scale to large neural network reward functions
 - Can perform well on real-world tasks (with an efficient policy optimizer)
- Cons
 - Adversarial optimization (GANs) hard to train!
 - Requires smooth experts for imitation
 - First person demonstrations typically used (no "teaching" as such)

Chelsea Finn, RL Bootcamp, 2016

- GAIL can imitate AirSim-vO human experts. Navigation easy, landing not-so-easy
- RL on proxy rewards can generate **smoother landings** necessary for GAIL
 - reward ϵ space of cost functions explored
- Expensive training time limits number of experiments you can run
- Lack of **tuned HPs** affects imitation accuracy

ADDRESSING TIME BOTTLENECKS

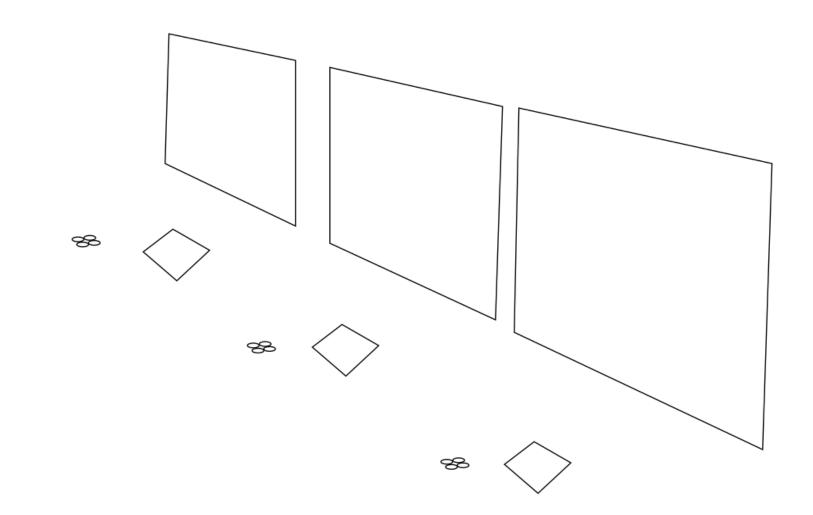
Environment samples are expensive!



Some numbers to crunch on...

Property	CartPole-v1	Hopper-v2	AirSim-v0
Dimension (state, action)	(4, 2)	(11, 3)	(6, 3)
Timesteps (GAIL)	3e5	1e6	1e6
Episode length (max)	500	1000	400 (human), 100 (RL)
Training time	20 minutes	2 hours	36 hours (at 4x)
Time/env interaction	4 ms	7.2 ms	129.6 ms
Time/episode	2 s	7.2 s	17.1 s (human), 4.3 s (RL)
Clock speed	Processor (4.8GHz)	Processor (4.8GHz)	4 x real time
Cumulative mean reward	Converged	Converged	Did not converge

Setting up multiple experiments



APt call was not received, entering hover mode for safety Collision#250 with Ground_4 - ObjID 148 requestip/Control was successful Collision Count:90 ClockSpeed config. actual: 4.000000, 3.989193

Sections

- 1. Need for sample-efficiency
- 2. Introduction to Imitation Learning
- 3. Application: Autonomous UAV Landing
- 4. Conclusions and Future Work

CONCLUSIONS

- Need sample-efficient learning for complex, long-horizon tasks
- IL (GAIL) is a sample-efficient approach to learn from demonstrations
- IL can be used to imitate (even suboptimal) experts from sparsely-rewarded environments
 - Requires smooth experts and careful HP tuning for perfect imitation
- Application: Designed a novel method of autonomous UAV landing (simulation)

Future Extensions: AirSim

- Learning reward functions with smoothness properties (e.g. WAIL)
- Collecting human expert data with smoother maneuvers, for better imitation
- Complex maneuvers. E.g. side-entry (yaw), landing on a moving platform, wind
- Switch to a quadcopter for learning (Parrot Anafi with Gazebo)
- Multi-agent, transfer learning, and meta-learning methods to learn behaviors that can be

generalized to unknown environments (e.g. point-to-point navigation)

THANK YOU!

TEXAS A&M UNIVERSITY Engineering

