

MAJOR PROJECT EXTERNALS

POWER ALLOCATION, ADAPTIVE BEAMFORMING IN LTE THROUGH PILOT-BASED CHANNEL ESTIMATION

INTERNAL GUIDE
PROF. SHUSHRUTHA K S

EXTERNAL GUIDE

DR. SAPTARSHI CHAUDHURI

1.	MOHAMED OMAR SHARIEF K	1RV12EC089
2.	NIKHIL MAHADEVAPPA KALLER	1RV12EC103
3.	PRABHASA K	1RV12EC111

PRESENTATION FLOW

- INTRODUCTION
- LTE PHY MODULATION AND CODING
- PILOT-BASED CHANNEL ESTIMATION
- POWER ALLOCATION
- ADAPTIVE BEAMFORMING
- FUTURE WORK
- REFERENCES

INTRODUCTION

- LTE PHY MODULATION AND CODING
- PILOT-BASED CHANNEL ESTIMATION
- POWER ALLOCATION
- ADAPTIVE BEAMFORMING
- FUTURE WORK
- REFERENCES

INTRODUCTION

- LITERATURE SURVEY
- MOTIVATION
- PROBLEM STATEMENT
- OBJECTIVES
- METHODOLOGY
- SPECIFICATIONS

PROBLEM STATEMENT

- In a wireless, multi-user, mobile environment, Base Station antennas must:
 - ✓ Dynamically steer the signal (beam) to the User Equipment
 - ✓ With a suitable power
 - ✓ Based on channel conditions

 STATEMENT – MATLAB implementation of power allocation and adaptive beamforming through a [UE location, Power required] look-up table based on downlink channel conditions and path loss

OBJECTIVES

- Understanding of LTE-PHY and enabling technologies
- Recreate modules that implement Modulation and Coding
- Pilot-based OFDM Channel Estimation
- Path Loss calculation
- Distance Based Power allocation
- Adaptive beam-steering through antenna array

METHODOLOGY

- Understanding of LTE-PHY and enabling technologies
- Recreate modules that implement Modulation and Coding
- Pilot-based OFDM Channel Estimation
- Path Loss calculation
- Distance Based Power allocation
- Adaptive beam-steering through antenna array

LTE NOMENCLATURE

eNB = Enhanced Node Base Station

UE = User Equipment

BLOCK DIAGRAM

PILOT-BASED CHANNEL ESTIMATION

LTE PHY MODULATION AND CODING

PILOT-BASED DOWNLINK OFDM CHANNEL ESTIMATION

POWER ALLOCATION, ADAPTIVE BEAMFORMING

SPECIFICATIONS - LTE PARAMETERS

OFDM parameters for downlink transmission subframe duration (1 ms) subcarrier spacing (15 kHz)						
Bandwidth (MHz)	1.4	3	5	10	15	20
Sampling frequency (MHz)	1.92	3.84	7.68	15.36	23.04	30.72
FFT size	128	256	512	1024	1536	2048
Number of resource blocks	6	15	25	50	75	100
OFDM symbols per slot			14/12		(Normal/	extended)
CP length	4.7/5.6			(Normal/extended)		

Channel	Number of	
bandwidth (MHz)	resource blocks	
1.4	6	
3	15	
5	25	
10	50	
15	75	
20	100	

SPECIFICATIONS - LTE PARAMETERS

Specification No.	Description
TS 36.101	User Equipment (UE) radio transmission and reception
TS 36.104	Base Station (eNodeB) radio transmission and reception
TS 36.201	LTE physical layer: General description
TS 36.211	Physical channels and modulation
TS 36.212	Multiplexing and channel coding
TS 36.213	Physical layer procedures
TS 36.214	Physical layer measurements
TS 36.305	Functional specification of User Equipment (UE) positioning
TR 36.824	LTE coverage enhancements
TR 36.863	Study on Cell-specific Reference Signals (CRS)
TR 36.897	Study on Elevation Beamforming for LTE

INTRODUCTION

- LTE PHY MODULATION AND CODING
- PILOT-BASED CHANNEL ESTIMATION
- POWER ALLOCATION
- ADAPTIVE BEAMFORMING
- FUTURE WORK
- REFERENCES

METHODOLOGY

Understanding of LTE-PHY

- Downlink eNodeB to UE
- Air Interface OFDM
- Enabling Technologies
 - > MIMO MU-MIMO
 - > TX, RX DIVERSITY
 - > LINK ADAPTATION

METHODOLOGY

Modulation and Coding

- Adaptive Modulation QPSK/16-QAM/64-QAM
- Scrambling Gold sequence (31 bits)
- Turbo Coding (Rate 1/3)
- Open source codes
 - Rate Matching
 - Codeblock Segmentation
- Channel Processing
- Reverse sequence at receiver

RESULTS – ADAPTIVE MODULATION

INPUT PARAMETERS

ModulationMode EbNo (SNR) maxNumErrors = 200 maxNumBits = 10^7

RESULTS - SCRAMBLING

INPUT PARAMETERS

ModulationMode EbNo (SNR) maxNumErrors = 200 maxNumBits = 10^7

RESULTS – TURBO CODING

RESULTS – EARLY TERMINATION

- Turbo Coding consumes almost 90% of runtime so far
- This can be reduced by generating CRC bits
- Only last 24 CRC bits checked, thereby reducing runtime

Command Window

```
>> EbNo=1; maxNumErrs=1e7; maxNumBits=1e7;
tic; [a,b]=Turbo(EbNo,maxNumErrs, maxNumBits); toc;
tic; [a,b]=Early_Termination(EbNo,maxNumErrs, maxNumBits); toc;
Elapsed time is 197.800292 seconds.
Elapsed time is 116.198952 seconds.
```


RESULTS – RATE MATCHING


```
numErrs =
    24

numBits =
    5001416

Elapsed time is 66.892972 seconds.
```


OVERALL BLOCK 1

METHODOLOGY

Pilot-based OFDM Channel Estimation

- Multipath Fading Frequency Selective
- Mobility Doppler Effect
- Resource Grid Configuration
 - > Six types of signals
 - ➤ CSR Pilot Signals
 - ➤ Reference Generation Open Source
- Resource Element Mapping
- OFDM Signal Generation
- Channel Modeling and Estimation

- INTRODUCTION
- LTE PHY MODULATION AND CODING
- PILOT-BASED CHANNEL ESTIMATION
- POWER ALLOCATION
- ADAPTIVE BEAMFORMING
- FUTURE WORK
- REFERENCES

RESOURCE GRID ON ANTENNA PORTS

LTE RESOURCE GRID

RESOURCE GRID CONFIGURATION


```
function p= prmsPDSCH(chanBW, contReg, modType, varargin)
% Returns parameter structures for LTE PDSCH simulation.
% Assumes a FDD, normal cyclic prefix, full-bandwidth, single-user
% SISO or SIMO downlink transmission.
%% PDSCH parameters
switch chanBW
case 1 % 1.4 MHz
BW = 1.4e6; N = 128; cpLen0 = 10; cpLenR = 9;
Nrb = 6; chanSRate = 1.92e6;
case 2 % 3 MHz
BW = 3e6; N = 256; cpLen0 = 20; cpLenR = 18;
Nrb = 15; chanSRate = 3.84e6;
case 3 % 5 MHz
BW = 5e6; N = 512; cpLen0 = 40; cpLenR = 36;
Nrb = 25; chanSRate = 7.68e6;
case 4 % 10 MHz
BW = 10e6; N = 1024; cpLen0 = 80; cpLenR = 72;
Nrb = 50; chanSRate = 15.36e6;
case 5 % 15 MHz
BW = 15e6; N = 1536; cpLen0 = 120; cpLenR = 108;
Nrb = 75; chanSRate = 23.04e6;
case 6 % 20 MHz
BW = 20e6; N = 2048; cpLen0 = 160; cpLenR = 144;
Nrb = 100: chanSRate = 30.72e6:
end
```

Channel	Number of	
bandwidth (MHz)	resource blocks	
1.4	6	
3	15	
5	25	
10	50	
15	75	
20	100	

RESULTS – Fixed BW, Varying Modulation Scheme (QPSK, 16-QAM)

```
RV COLLEGE OF ENGINEERING, BENGALURU

ESTD 1963

RV

GLORIOUS YEARS

GOLDEN MARCHING
JUBILEE AHEAD
2013
```

```
>> prmsPDSCH(1,7,1)
                  BW: 1400000
                   N: 128
              cpLen0: 10
              cpLenR: 9
                 Nrb: 6
           chanSRate: 1920000
             contReg: 7
               numTx: 1
               numRx: 1
           numLayers: 1
        numCodeWords: 1
              deltaF: 15000
             Nrb sc: 12
            Ndl symb: 7
        numResources: 1008
    numCSRResources: 48
           numContRE: 492
            numBCHRE: 276
            numSSSRE: 72
            numPSSRE: 72
           numDataRE: [3x1 double]
    numDataResources: 960
                  Om: 2
        numLayPerCW: 1
         numDataBits: 1920
        numPDSCHBits: [3x1 double]
                maxG: 936
```

```
>> prmsPDSCH(1,7,2)
ans =
                  BW: 1400000
                   N: 128
              cpLen0: 10
              cpLenR: 9
                 Nrb: 6
           chanSRate: 1920000
             contReg: 7
               numTx: 1
               numRx: 1
           numLayers: 1
        numCodeWords: 1
              deltaF: 15000
             Nrb sc: 12
            Ndl symb: 7
        numResources: 1008
    numCSRResources: 48
           numContRE: 492
            numBCHRE: 276
            numSSSRE: 72
            numPSSRE: 72
           numDataRE: [3x1 double]
    numDataResources: 960
                  Om: 4
        numLayPerCW: 1
        numDataBits: 3840
        numPDSCHBits: [3x1 double]
                maxG: 1872
```


RESULTS – Varying BW (1.4, 3, 5 MHz) Fixed Modulation Scheme


```
>> prmsPDSCH(1,7,1)
ans =
                  BW: 1400000
                   N: 128
              cpLen0: 10
              cpLenR: 9
                 Nrb: 6
           chanSRate: 1920000
             contReg: 7
               numTx: 1
               numRx: 1
           numLavers: 1
       numCodeWords: 1
              deltaF: 15000
             Nrb sc: 12
            Ndl symb: 7
       numResources: 1008
    numCSRResources: 48
           numContRE: 492
           numBCHRE: 276
            numSSSRE: 72
            numPSSRE: 72
           numDataRE: [3x1 double]
   numDataResources: 960
                  Om: 2
        numLayPerCW: 1
        numDataBits: 1920
        numPDSCHBits: [3x1 double]
               maxG: 936
```

```
>> prmsPDSCH(2,7,1)
                  BW: 3000000
                   N: 256
              cpLen0: 20
              cpLenR: 18
                 Nrb: 15
           chanSRate: 3840000
             contReg: 7
               numTx: 1
               numRx: 1
           numLayers: 1
        numCodeWords: 1
              deltaF: 15000
              Nrb sc: 12
            Ndl symb: 7
        numResources: 2520
     numCSRResources: 120
           numContRE: 1230
            numBCHRE: 276
            numSSSRE: 72
            numPSSRE: 72
           numDataRE: [3x1 double]
    numDataResources: 2400
                  Om: 2
         numLayPerCW: 1
         numDataBits: 4800
        numPDSCHBits: [3x1 double]
                maxG: 2340
```

```
>> prmsPDSCH(3,7,1)
                  BW: 5000000
                  N: 512
              cpLen0: 40
              cpLenR: 36
                Nrb: 25
           chanSRate: 7680000
             contReg: 7
              numTx: 1
              numRx: 1
          numLayers: 1
        numCodeWords: 1
             deltaF: 15000
             Nrb sc: 12
            Ndl symb: 7
        numResources: 4200
    numCSRResources: 200
           numContRE: 2050
            numBCHRE: 276
            numSSSRE: 72
            numPSSRE: 72
          numDataRE: [3x1 double]
   numDataResources: 4000
                  Om: 2
        numLavPerCW: 1
        numDataBits: 8000
        numPDSCHBits: [3x1 double]
                maxG: 3900
```


RESULTS - PILOT SIGNAL GENERATION


```
Command Window
New to MATLAB? Watch this Video, see Examples, or read
  >> CSRgenerator(0,1)
 ans(:,:,1) =
    0.7071 - 0.7071i -0.7071 - 0.7071i
    0.7071 + 0.7071i 0.7071 + 0.7071i
    0.7071 - 0.7071i -0.7071 - 0.7071i
    -0.7071 + 0.7071i -0.7071 + 0.7071i
    -0.7071 + 0.7071i -0.7071 - 0.7071i
    -0.7071 - 0.7071i 0.7071 + 0.7071i
    -0.7071 + 0.7071i -0.7071 + 0.7071i
    -0.7071 - 0.7071i -0.7071 - 0.7071i
    0.7071 + 0.7071i 0.7071 - 0.7071i
    -0.7071 - 0.7071i 0.7071 + 0.7071i
    -0.7071 + 0.7071i -0.7071 + 0.7071i
    -0.7071 - 0.7071i -0.7071 - 0.7071i
    0.7071 - 0.7071i 0.7071 + 0.7071i
    0.7071 + 0.7071i -0.7071 - 0.7071i
    -0.7071 + 0.7071i 0.7071 - 0.7071i
    -0.7071 - 0.7071i 0.7071 + 0.7071i
    -0.7071 - 0.7071i 0.7071 + 0.7071i
    0.7071 - 0.7071i -0.7071 + 0.7071i
    0.7071 + 0.7071i 0.7071 - 0.7071i
    0.7071 - 0.7071i 0.7071 + 0.7071i
    0.7071 - 0.7071i -0.7071 - 0.7071i
    0.7071 + 0.7071i -0.7071 + 0.7071i
    -0.7071 + 0.7071i -0.7071 - 0.7071i
    0.7071 + 0.7071i 0.7071 - 0.7071i
    0.7071 + 0.7071i - 0.7071 + 0.7071i
    -0.7071 + 0.7071i 0.7071 + 0.7071i
    -0.7071 - 0.7071i -0.7071 + 0.7071i
    -0.7071 - 0.7071i -0.7071 + 0.7071i
    0.7071 - 0.7071i 0.7071 - 0.7071i
    -0.7071 + 0.7071i -0.7071 + 0.7071i
    0.7071 + 0.7071i 0.7071 + 0.7071i
    -0.7071 + 0.7071i -0.7071 + 0.7071i
    -0.7071 - 0.7071i 0.7071 + 0.7071i
    0.7071 + 0.7071i 0.7071 + 0.7071i
    0.7071 + 0.7071i -0.7071 + 0.7071i
    -0.7071 - 0.7071i 0.7071 - 0.7071i
    -0.7071 + 0.7071i 0.7071 + 0.7071i
    0.7071 + 0.7071i -0.7071 + 0.7071i
```

```
Command Window
New to MATLAB? Watch this Video, see Examples, or rea
    -0.7071 - 0.7071i 0.7071 + 0.7071i
    -0.7071 - 0.7071i 0.7071 + 0.7071i
    -0.7071 + 0.7071i 0.7071 - 0.7071i
     0.7071 + 0.7071i 0.7071 + 0.7071i
     0.7071 + 0.7071i 0.7071 + 0.7071i
    -0.7071 - 0.7071i -0.7071 - 0.7071i
     0.7071 + 0.7071i - 0.7071 + 0.7071i
    -0.7071 - 0.7071i 0.7071 - 0.7071i
     0.7071 - 0.7071i 0.7071 - 0.7071i
    -0.7071 - 0.7071i -0.7071 - 0.7071i
    -0.7071 - 0.7071i 0.7071 - 0.7071i
    -0.7071 - 0.7071i -0.7071 - 0.7071i
    0.7071 - 0.7071i -0.7071 - 0.7071i
     0.7071 + 0.7071i 0.7071 + 0.7071i
     0.7071 - 0.7071i -0.7071 - 0.7071i
     0.7071 + 0.7071i 0.7071 + 0.7071i
     0.7071 - 0.7071i 0.7071 - 0.7071i
     0.7071 - 0.7071i -0.7071 - 0.7071i
     0.7071 + 0.7071i -0.7071 + 0.7071i
     0.7071 - 0.7071i 0.7071 - 0.7071i
  ans(:,:,2) =
    -0.7071 - 0.7071i 0.7071 + 0.7071i
    -0.7071 - 0.7071i 0.7071 - 0.7071i
    -0.7071 - 0.7071i 0.7071 + 0.7071i
    -0.7071 - 0.7071i 0.7071 - 0.7071i
    -0.7071 - 0.7071i -0.7071 + 0.7071i
    -0.7071 + 0.7071i -0.7071 - 0.7071i
    -0.7071 + 0.7071i -0.7071 - 0.7071i
    -0.7071 + 0.7071i -0.7071 + 0.7071i
     0.7071 - 0.7071i 0.7071 + 0.7071i
    -0.7071 + 0.7071i -0.7071 - 0.7071i
    -0.7071 + 0.7071i -0.7071 - 0.7071i
    -0.7071 + 0.7071i -0.7071 + 0.7071i
     0.7071 + 0.7071i 0.7071 - 0.7071i
    -0.7071 - 0.7071i -0.7071 + 0.7071i
     0.7071 - 0.7071i -0.7071 + 0.7071i
     0.7071 + 0.7071i -0.7071 - 0.7071i
     0.7071 + 0.7071i -0.7071 - 0.7071i
     0.7071 - 0.7071i -0.7071 + 0.7071i
   -0.7071 + 0.7071i -0.7071 + 0.7071i
```


RESULTS – RESOURCE ELEMENT MAPPING

User data region

11-13 OFDM symbols

OFDM symbols

Control region

1-3 OFDM symbols

Subcarriers

One Subframe has 14 OFDM symbols. A frame is made up of 10 subframes

RESULTS – RESOURCE ELEMENT MAPPING


```
Command Window
   Columns 1 through 5
                                                                                  1.0000 + 0.0000i
    0.7071 - 0.7071i
                        0.0000 + 0.0000i
                                           0.0000 + 0.0000i
                                                               0.0000 + 0.0000i
     0.0000 + 0.0000i
                        0.0000 + 0.0000i
                                           0.0000 + 0.0000i
                                                               0.0000 + 0.0000i
                                                                                  0.0000 + 0.0000i
    0.0000 + 0.0000i
                        0.0000 + 0.0000i
                                           0.0000 + 0.0000i
                                                               0.0000 + 0.0000i
                                                                                  0.0000 + 0.0000i
    0.0000 + 0.0000i
                        0.0000 + 0.0000i
                                           0.0000 + 0.0000i
                                                               0.0000 + 0.0000i
                                                                                  0.7071 - 0.7071i
    0.0000 + 0.0000i
                        0.0000 + 0.0000i
                                           0.0000 + 0.0000i
                                                               0.0000 + 0.0000i
                                                                                  0.0000 + 0.0000i
    0.0000 + 0.0000i
                        0.0000 + 0.0000i
                                           0.0000 + 0.0000i
                                                               0.0000 + 0.0000i
                                                                                  1.0000 + 0.0000i
    0.7071 + 0.7071i
                        0.0000 + 0.0000i
                                           0.0000 + 0.0000i
                                                               0.0000 + 0.0000i
                                                                                  1.0000 + 0.0000i
    0.0000 + 0.0000i
                        0.0000 + 0.0000i
                                           0.0000 + 0.0000i
                                                               0.0000 + 0.0000i
                                                                                  1.0000 + 0.0000i
    0.0000 + 0.0000i
                        0.0000 + 0.0000i
                                           0.0000 + 0.0000i
                                                               0.0000 + 0.0000i
                                                                                  0.0000 + 0.0000i
    0.0000 + 0.0000i
                        0.0000 + 0.0000i
                                           0.0000 + 0.0000i
                                                               0.0000 + 0.0000i
                                                                                  0.7071 + 0.7071i
                                                                                  1.0000 + 0.0000i
    0.0000 + 0.0000i
                        0.0000 + 0.0000i
                                           0.0000 + 0.0000i
                                                               0.0000 + 0.0000i
    0.0000 + 0.0000i
                        0.0000 + 0.0000i
                                           0.0000 + 0.0000i
                                                               0.0000 + 0.0000i
                                                                                  0.0000 + 0.0000i
                                           0.0000 + 0.0000i
    0.7071 - 0.7071i
                        0.0000 + 0.0000i
                                                               0.0000 + 0.0000i
                                                                                  0.0000 + 0.0000i
     0.0000 + 0.0000i
                        0.0000 + 0.0000i
                                           0.0000 + 0.0000i
                                                               0.0000 + 0.0000i
                                                                                  0.0000 + 0.0000i
    0.0000 + 0.0000i
                        0.0000 + 0.0000i
                                           0.0000 + 0.0000i
                                                               0.0000 + 0.0000i
                                                                                  1.0000 + 0.0000i
    0.0000 + 0.0000i
                        0.0000 + 0.0000i
                                           0.0000 + 0.0000i
                                                               0.0000 + 0.0000i
                                                                                 -0.7071 + 0.7071i
    0.0000 + 0.0000i
                                           0.0000 + 0.0000i
                                                                                  1.0000 + 0.0000i
                        0.0000 + 0.0000i
                                                               0.0000 + 0.0000i
    0.0000 + 0.0000i
                        0.0000 + 0.0000i
                                           0.0000 + 0.0000i
                                                               0.0000 + 0.0000i
                                                                                  1.0000 + 0.0000i
   -0.7071 + 0.7071i
                        0.0000 + 0.0000i
                                           0.0000 + 0.0000i
                                                               0.0000 + 0.0000i
                                                                                  1.0000 + 0.0000i
    0.0000 + 0.0000i
                        0.0000 + 0.0000i
                                           0.0000 + 0.0000i
                                                               0.0000 + 0.0000i
                                                                                  1.0000 + 0.0000i
    0.0000 + 0.0000i
                        0.0000 + 0.0000i
                                           0.0000 + 0.0000i
                                                               0.0000 + 0.0000i
                                                                                  0.0000 + 0.0000i
    0.0000 + 0.0000i
                        0.0000 + 0.0000i
                                           0.0000 + 0.0000i
                                                               0.0000 + 0.0000i
                                                                                 -0.7071 - 0.7071i
    0.0000 + 0.0000i
                        0.0000 + 0.0000i
                                           0.0000 + 0.0000i
                                                               0.0000 + 0.0000i
                                                                                  0.0000 + 0.0000i
    0.0000 + 0.0000i
                        0.0000 + 0.0000i
                                           0.0000 + 0.0000i
                                                               0.0000 + 0.0000i
                                                                                  0.0000 + 0.0000i
   -0.7071 + 0.7071i
                        0.0000 + 0.0000i
                                           0.0000 + 0.0000i
                                                               0.0000 + 0.0000i
                                                                                  0.0000 + 0.0000i
    0.0000 + 0.0000i
                        0.0000 + 0.0000i
                                           0.0000 + 0.0000i
                                                               0.0000 + 0.0000i
                                                                                  1.0000 + 0.0000i
    0.0000 + 0.0000i
                        0.0000 + 0.0000i
                                           0.0000 + 0.0000i
                                                               0.0000 + 0.0000i
                                                                                  0.0000 + 0.0000i
    0.0000 + 0.0000i
                        0.0000 + 0.0000i
                                           0.0000 + 0.0000i
                                                               0.0000 + 0.0000i
                                                                                 -0.7071 - 0.7071i
    0.0000 + 0.0000i
                        0.0000 + 0.0000i
                                           0.0000 + 0.0000i
                                                               0.0000 + 0.0000i
                                                                                  0.0000 + 0.0000i
    0.0000 + 0.0000i
                        0.0000 + 0.0000i
                                           0.0000 + 0.0000i
                                                               0.0000 + 0.0000i
                                                                                  0.0000 + 0.0000i
   -0.7071 - 0.7071i
                        0.0000 + 0.0000i
                                           0.0000 + 0.0000i
                                                               0.0000 + 0.0000i
                                                                                  1.0000 + 0.0000i
    0.0000 + 0.0000i
                        0.0000 + 0.0000i
                                           0.0000 + 0.0000i
                                                               0.0000 + 0.0000i
                                                                                  0.0000 + 0.0000i
    0.0000 + 0.0000i
                        0.0000 + 0.0000i
                                           0.0000 + 0.0000i
                                                               0.0000 + 0.0000i
                                                                                  0.0000 + 0.0000i
    0.0000 + 0.0000i
                        0.0000 + 0.0000i
                                           0.0000 + 0.0000i
                                                               0.0000 + 0.0000i
                                                                                  0.7071 - 0.7071i
```


RESULTS – RESOURCE ELEMENT MAPPING


```
Command Window
    Columns 6 through 10
     0.0000 + 0.0000i
                        0.0000 + 0.0000i
                                            0.7071 + 0.7071i
                                                                0.0000 + 0.0000i
                                                                                   0.0000 + 0.0000i
     0.0000 + 0.0000i
                        0.0000 + 0.0000i
                                            0.0000 + 0.0000i
                                                                0.0000 + 0.0000i
                                                                                   0.0000 + 0.0000i
     0.0000 + 0.0000i
                                                                                   0.0000 + 0.0000i
                        0.0000 + 0.0000i
                                            0.0000 + 0.0000i
                                                                0.0000 + 0.0000i
     0.0000 + 0.0000i
                                                                                   0.0000 + 0.0000i
                        0.0000 + 0.0000i
                                            0.0000 + 0.0000i
                                                                0.0000 + 0.0000i
     0.0000 + 0.0000i
                        0.0000 + 0.0000i
                                            0.0000 + 0.0000i
                                                                0.0000 + 0.0000i
                                                                                   0.0000 + 0.0000i
     0.0000 + 0.0000i
                        0.0000 + 0.0000i
                                            0.0000 + 0.0000i
                                                                0.0000 + 0.0000i
                                                                                   0.0000 + 0.0000i
     0.0000 + 0.0000i
                        0.0000 + 0.0000i
                                           -0.7071 + 0.7071i
                                                                0.0000 + 0.0000i
                                                                                   0.0000 + 0.0000i
     0.0000 + 0.0000i
                        0.0000 + 0.0000i
                                            0.0000 + 0.0000i
                                                                0.0000 + 0.0000i
                                                                                   0.0000 + 0.0000i
     0.0000 + 0.0000i
                        0.0000 + 0.0000i
                                            0.0000 + 0.0000i
                                                                0.0000 + 0.0000i
                                                                                   0.0000 + 0.0000i
     0.0000 + 0.0000i
                        0.0000 + 0.0000i
                                            0.0000 + 0.0000i
                                                                0.0000 + 0.0000i
                                                                                   0.0000 + 0.0000i
     0.0000 + 0.0000i
                        0.0000 + 0.0000i
                                            0.0000 + 0.0000i
                                                                0.0000 + 0.0000i
                                                                                   0.0000 + 0.0000i
     0.0000 + 0.0000i
                        0.0000 + 0.0000i
                                            0.0000 + 0.0000i
                                                                0.0000 + 0.0000i
                                                                                   0.0000 + 0.0000i
     0.0000 + 0.0000i
                        0.0000 + 0.0000i
                                           -0.7071 - 0.7071i
                                                                0.0000 + 0.0000i
                                                                                   0.0000 + 0.0000i
     0.0000 + 0.0000i
                                                                                   0.0000 + 0.0000i
                        0.0000 + 0.0000i
                                            0.0000 + 0.0000i
                                                                0.0000 + 0.0000i
     0.0000 + 0.0000i
                        0.0000 + 0.0000i
                                            0.0000 + 0.0000i
                                                                0.0000 + 0.0000i
                                                                                   0.0000 + 0.0000i
                                                               0.0000 + 0.0000i
     0.0000 + 0.0000i
                        0.0000 + 0.0000i
                                            0.0000 + 0.0000i
                                                                                   0.0000 + 0.0000i
     0.0000 + 0.0000i
                        0.0000 + 0.0000i
                                            0.0000 + 0.0000i
                                                                0.0000 + 0.0000i
                                                                                   0.0000 + 0.0000i
     0.0000 + 0.0000i
                        0.0000 + 0.0000i
                                                                                   0.0000 + 0.0000i
                                            0.0000 + 0.0000i
                                                                0.0000 + 0.0000i
     0.0000 + 0.0000i
                                                                                   0.0000 + 0.0000i
                        0.0000 + 0.0000i
                                           -0.7071 - 0.7071i
                                                                0.0000 + 0.0000i
     0.0000 + 0.0000i
                        0.0000 + 0.0000i
                                            0.0000 + 0.0000i
                                                                0.0000 + 0.0000i
                                                                                   0.0000 + 0.0000i
     0.0000 + 0.0000i
                        0.0000 + 0.0000i
                                            0.0000 + 0.0000i
                                                                0.0000 + 0.0000i
                                                                                   0.0000 + 0.0000i
     0.0000 + 0.0000i
                        0.0000 + 0.0000i
                                            0.0000 + 0.0000i
                                                               0.0000 + 0.0000i
                                                                                   0.0000 + 0.0000i
     0.0000 + 0.0000i
                        0.0000 + 0.0000i
                                            0.0000 + 0.0000i
                                                                0.0000 + 0.0000i
                                                                                   0.0000 + 0.0000i
                        0.0000 + 0.0000i
     0.0000 + 0.0000i
                                            0.0000 + 0.0000i
                                                                0.0000 + 0.0000i
                                                                                   0.0000 + 0.0000i
     0.0000 + 0.0000i
                        0.0000 + 0.0000i
                                            0.7071 - 0.7071i
                                                                0.0000 + 0.0000i
                                                                                   0.0000 + 0.0000i
     0.0000 + 0.0000i
                        0.0000 + 0.0000i
                                            0.0000 + 0.0000i
                                                                0.0000 + 0.0000i
                                                                                   0.0000 + 0.0000i
     0.0000 + 0.0000i
                        0.0000 + 0.0000i
                                                                                   0.0000 + 0.0000i
                                            0.0000 + 0.0000i
                                                                0.0000 + 0.0000i
     0.0000 + 0.0000i
                        0.0000 + 0.0000i
                                            0.0000 + 0.0000i
                                                                                   0.0000 + 0.0000i
                                                                0.0000 + 0.0000i
     0.0000 + 0.0000i
                        0.0000 + 0.0000i
                                            0.0000 + 0.0000i
                                                                0.0000 + 0.0000i
                                                                                   0.0000 + 0.0000i
     0.0000 + 0.0000i
                        0.0000 + 0.0000i
                                            0.0000 + 0.0000i
                                                                0.0000 + 0.0000i
                                                                                   0.0000 + 0.0000i
     0.0000 + 0.0000i
                        0.0000 + 0.0000i
                                           -0.7071 + 0.7071i
                                                                0.0000 + 0.0000i
                                                                                   0.0000 + 0.0000i
     0.0000 + 0.0000i
                        0.0000 + 0.0000i
                                            0.0000 + 0.0000i
                                                                0.0000 + 0.0000i
                                                                                   0.0000 + 0.0000i
     0.0000 + 0.0000i
                        0.0000 + 0.0000i
                                            0.0000 + 0.0000i
                                                                0.0000 + 0.0000i
                                                                                   0.0000 + 0.0000i
     0.0000 + 0.0000i
                        0.0000 + 0.0000i
                                            0.0000 + 0.0000i
                                                                0.0000 + 0.0000i
                                                                                   0.0000 + 0.0000i
```


RESULTS – RESOURCE ELEMENT MAPPING


```
Command Window
    Columns 11 through 14
                         0.0000 + 0.0000i
                                            0.0000 + 0.0000i
     0.0000 + 0.0000i
                                                               1.0000 + 0.0000i
                                                               0.0000 + 0.0000i
     0.0000 + 0.0000i
                        0.0000 + 0.0000i
                                            1.0000 + 0.0000i
                                                               0.0000 + 0.0000i
     0.0000 + 0.0000i
                        1.0000 + 0.0000i
                                            0.0000 + 0.0000i
     0.0000 + 0.0000i
                       -0.7071 + 0.7071i
                                            1.0000 + 0.0000i
                                                               0.0000 + 0.0000i
     0.0000 + 0.0000i
                        1.0000 + 0.0000i
                                            1.0000 + 0.0000i
                                                               1.0000 + 0.0000i
     0.0000 + 0.0000i
                        1.0000 + 0.0000i
                                            1.0000 + 0.0000i
                                                               1.0000 + 0.0000i
     0.0000 + 0.0000i
                                            1.0000 + 0.0000i
                        0.0000 + 0.0000i
                                                               0.0000 + 0.0000i
     0.0000 + 0.0000i
                        0.0000 + 0.0000i
                                            1.0000 + 0.0000i
                                                               0.0000 + 0.0000i
     0.0000 + 0.0000i
                        1.0000 + 0.0000i
                                            1.0000 + 0.0000i
                                                               1.0000 + 0.0000i
     0.0000 + 0.0000i
                        0.7071 + 0.7071i
                                            0.0000 + 0.0000i
                                                               0.0000 + 0.0000i
     0.0000 + 0.0000i
                        0.0000 + 0.0000i
                                            1.0000 + 0.0000i
                                                               0.0000 + 0.0000i
     0.0000 + 0.0000i
                        0.0000 + 0.0000i
                                            0.0000 + 0.0000i
                                                               1.0000 + 0.0000i
     0.0000 + 0.0000i
                        1.0000 + 0.0000i
                                            0.0000 + 0.0000i
                                                               1.0000 + 0.0000i
     0.0000 + 0.0000i
                        1.0000 + 0.0000i
                                            0.0000 + 0.0000i
                                                               1.0000 + 0.0000i
     0.0000 + 0.0000i
                        1.0000 + 0.0000i
                                            0.0000 + 0.0000i
                                                               1.0000 + 0.0000i
     0.0000 + 0.0000i
                       -0.7071 - 0.7071i
                                                               0.0000 + 0.0000i
                                            1.0000 + 0.0000i
     0.0000 + 0.0000i
                        0.0000 + 0.0000i
                                            1.0000 + 0.0000i
                                                               1.0000 + 0.0000i
     0.0000 + 0.0000i
                        1.0000 + 0.0000i
                                            0.0000 + 0.0000i
                                                               1.0000 + 0.0000i
     0.0000 + 0.0000i
                        1.0000 + 0.0000i
                                            1.0000 + 0.0000i
                                                               1.0000 + 0.0000i
     0.0000 + 0.0000i
                        1.0000 + 0.0000i
                                            0.0000 + 0.0000i
                                                               1.0000 + 0.0000i
     0.0000 + 0.0000i
                        1.0000 + 0.0000i
                                                               0.0000 + 0.0000i
                                            0.0000 + 0.0000i
     0.0000 + 0.0000i
                       -0.7071 - 0.7071i
                                            0.0000 + 0.0000i
                                                               1.0000 + 0.0000i
     0.0000 + 0.0000i
                        0.0000 + 0.0000i
                                            0.0000 + 0.0000i
                                                               0.0000 + 0.0000i
     0.0000 + 0.0000i
                        1.0000 + 0.0000i
                                            1.0000 + 0.0000i
                                                               0.0000 + 0.0000i
     0.0000 + 0.0000i
                         0.0000 + 0.0000i
                                            1.0000 + 0.0000i
                                                               1.0000 + 0.0000i
     0.0000 + 0.0000i
                        0.0000 + 0.0000i
                                            1.0000 + 0.0000i
                                                               0.0000 + 0.0000i
     0.0000 + 0.0000i
                        1.0000 + 0.0000i
                                            1.0000 + 0.0000i
                                                               0.0000 + 0.0000i
     0.0000 + 0.0000i
                        0.7071 - 0.7071i
                                            0.0000 + 0.0000i
                                                               0.0000 + 0.0000i
     0.0000 + 0.0000i
                        0.0000 + 0.0000i
                                            1.0000 + 0.0000i
                                                               0.0000 + 0.0000i
     0.0000 + 0.0000i
                        0.0000 + 0.0000i
                                            1.0000 + 0.0000i
                                                               1.0000 + 0.0000i
     0.0000 + 0.0000i
                                            1.0000 + 0.0000i
                                                               1.0000 + 0.0000i
                        0.0000 + 0.0000i
                        0.0000 + 0.0000i
     0.0000 + 0.0000i
                                            1.0000 + 0.0000i
                                                               0.0000 + 0.0000i
     0.0000 + 0.0000i
                        1.0000 + 0.0000i
                                            0.0000 + 0.0000i
                                                               0.0000 + 0.0000i
     0.0000 + 0.0000i
                       -0.7071 - 0.7071i
                                            0.0000 + 0.0000i
                                                               0.0000 + 0.0000i
```


MIMO TRANSMISSION MODES

LTE transmission modes	Description		
Mode 1	Single-antenna transmission		
Mode 2	Transmit diversity		
Mode 3	Open-loop codebook-based precoding		
Mode 4	Closed-loop codebook-based precoding		
Mode 5	Multi-user-MIMO version of transmission mode 4		
Mode 6	Single-layer special case of closed-loop codebook-based precoding		
Mode 7	Release-8 non-codebook-based precoding supporting only single-layer based on beamforming		
Mode 8	Release-9 non-codebook-based precoding supporting up to two layers.		
Mode 9	Release-10 non-codebook-based precoding supporting up to eight layers		

TRANSMISSION MODE 5 – MULTIUSER MIMO

EQUALIZER EFFECT

EQUALIZER EFFECT

OVERALL BLOCK 2 AND 3

- INTRODUCTION
- LTE PHY MODULATION AND CODING
- PILOT-BASED CHANNEL ESTIMATION
- POWER ALLOCATION
- ADAPTIVE BEAMFORMING
- FUTURE WORK
- REFERENCES

Path Loss calculation

- P_t Transmitted Power (Notified to UE)
- P_r Received Power (Measured by UE)
- $10*\log(P_t/P_r)$ Path Loss

Okumura Hata Model

 $P_{loss} = 69.55 + 26.16*log10(frequency) - 13.82*log10(h_{te}) + (44.9 - 6.55*log10(h_{te}))*log10(distance);$

Rearranged Okumura Hata Model

Distance = $10.^{(P_{loss} - 69.55 - 26.16*log10(frequency) + 13.82*log10(h_{te}))/(44.9 - 6.55*log10(h_{te})))$;

RESULTS

RESULTS

Determination of (r,\theta) of user – DoA Estimation – MUSIC Algorithm

Power allocation – Power Control through Open-loop Feedback Techniques

(r,P) Look-up table for entire cell – Obtaining relation between the two variables

Repeating entire process for multi-user MIMO

Downlink Power Control

- Power control refers to the strategies or techniques required in order to adjust, correct and manage the power from the base station and the mobile station in an efficient manner.
- It minimises the necessary transmission power level to achieve good quality of service. This reduces the co-channel interference in other cells, which increases the system capacity.
- Open-loop power control

Distance Based Power Allocation

- The distance-based power allocation algorithm (DBPA) uses the distance between base station and each mobile station to allocate transmitted power to each each of its served mobile.
- The DBPA algorithm computes the transmitted power of mobile m according to the following equation:

$$p_m = k x_{a_m m}^n$$

where,
$$x_{a_m m} = \begin{cases} \frac{d_{a_m m}}{R}, & \text{if } d_{a_m m} > d_{min} \\ \frac{d_{min}}{R}, & \text{if } d_{a_m m} \leq d_{min} \end{cases}$$

• k=positive constant, R=maximum range, n= real positive value,d= distance between MS and BS.

CQI Index	Modulation	Code Rate X 1024	Efficiency
0	No transmission		
1	QPSK	78	0.1523
2	QPSK	120	0.2344
3	QPSK	193	0.3880
4	QPSK	308	0.6016
5	QPSK	449	0.8770
6	QPSK	602	1.1758
7	16QAM	378	1.4766
8	16QAM	490	1.9141
9	16QAM	616	2.4063
10	64QAM	466	2.7305
11	64QAM	567	3.3223
12	64QAM	666	3.9023
13	64QAM	722	4.5234
14	64QAM	873	5.1152
15	64QAM	948	5.5547

- INTRODUCTION
- LTE PHY MODULATION AND CODING
- PILOT-BASED CHANNEL ESTIMATION
- POWER ALLOCATION
- ADAPTIVE BEAMFORMING
- FUTURE WORK
- REFERENCES

Adaptive beam-steering from antenna – LMS Algorithm

BLOCK DIAGRAM

MATHEMATICAL MODELING

ANTENNA ARRAY PATTERN – For n arrays, separated by a uniform distance d, oriented at angle θ , having weights w_n , Array Factor (AF) is given as:

$$AF(\theta) = \sum_{i=0}^{N-1} w_n e^{jknd\sin(\theta)}$$

▶ BEAMFORMING ALGORITHM – The weights for LMS algorithm is given as:

$$w_{l,k+1} = w_{lk} + 2\mu \ \epsilon_k \ x_{lk}$$

MATHEMATICAL MODELING

NATENNA ARRAY PATTERN – For n arrays, separated by a uniform distance d, oriented at angle θ, having weights w_n , Array Factor (AF) is given as:

$$AF(\theta) = \sum_{i=0}^{N-1} w_n e^{jknd\sin(\theta)}$$

▶ BEAMFORMING ALGORITHM – The weights for LMS algorithm is given as:

$$w_{l,k+1} = w_{lk} + 2\mu \ \epsilon_k \ x_{lk}$$

TRANSMISSION MODE 7 – UE BEAMFORMING

RESULTS

Desired signal arrives at an angle of 45 degrees – MAXIMISE POWER Interferer signals arrive at 30, 60 degrees – STEER NULLS

POLAR, AMPLITUDE PATTERN OF RECEIVED BEAM – MAXIMA AT 45 DEGREES, NULLS AT 30, 60 DEGREES

RESULTS

SAME DIRECTIONAL VALUES WITH NUMBER OF ANTENNAS INCREASED FROM 5 TO 10

- INTRODUCTION
- LTE PHY MODULATION AND CODING
- PILOT-BASED CHANNEL ESTIMATION
- POWER ALLOCATION, ADAPTIVE BEAMFORMING
- FUTURE WORK
- REFERENCES

FUTURE SCOPE – AT WIPRO

- IMPLEMENTATION OF MIMO, LINK ADAPTATION ALGORITHMS
- CHANNEL-DEPENDENT SCHEDULING
- CONVERSION OF MATLAB CODE TO C
- IMPLEMENTATION ON TI DSP BOARD
- DEVELOP RELATION MATRIX BETWEEN PHYSICAL, LOGICAL ANTENNA

- 1. H. Zarrinkoub, "Understanding LTE with MATLAB: From mathematical modeling to simulation and prototyping". John Wiley & Sons, 2014. ISBN: 978-1-1184-4341-5.
- 2. J. W. Mink, H. S. Hwang, C. W. Hicks, T. W. Nuteson, M. B. Steer, J. Harvey, "Spatial power combining for two dimensional structures" Millimeter Waves, 1997 Topical Symposium on, 1997, pp. 133-136.
- 3. B. L. Ng, Y. Kim, J. Lee, Y. Li, Y. H. Nam, J. Zhang, K. Sayana, "Fulfilling the promise of massive MIMO with 2D active antenna array", IEEE Globecom Workshops, pp. 691-696, 2012.
- 4. Y. Zhu, Y. L. Liu, A. Wang, K. Sayana, J. C. Zhang, "DoA estimation and capacity analysis for 2D active massive MIMO systems", IEEE International Conference on Communications (ICC), pp. 4630-4634, 2013.
- 5. Y. Hashimoto, Y. Fujino, Y. Kuwahara, "Orthogonal coding for the pilot symbol of MMSE adaptive antenna for W-CDMA reverse link", IEEE Region 10 Conference, Vol. 1,pp. 499-502,2004.
- 6. A. Seeger, M. Sikora, W. Utschick, "Antenna weight verification for closed-loop downlink Eigen beam forming", Global Telecommunications Conference, GLOBECOM '02. IEEE, Vol. 1, pp. 982-986, 2002.
- 7. S. Nagaraj, Yih-Fang Huang, "Multiple antenna transmission with channel state information: a low-rate feedback approach", IEEE Signal Processing Letters, Vol. 11, pp. 573-576, 2004.
- 8. A. Maaref, S. Aissa, "Generalized Performance Analysis of Adaptive PSAM-Based Transmit-Beamforming for Wireless MIMO systems", IEEE 63rd Vehicular Technology Conference, Vol. 5,"pp. 2578-2582, 2006.

- 9. Gang Jin, Yanjun Hu, "A Novel Channel Estimation based on Pilot-Aided in LTE Downlink Systems", Seventh International Symposium on Computational Intelligence and Design (ISCID) ", Vol. 2, pp. 424-428, 2014.
- 10. Tareq Y. Al-Naffouri, K. M. Zahidul Islam, Naofal Al-Dhahir, Sili Lu, "A Model Reduction Approach for OFDM Channel estimation Under High Mobility Conditions", vol. 58,pp. 2181-2193, 2010.
- 11. Yang Qin, Bing Hui, KyungHi Chang, "Performance and complexity evaluation of pilot-based channel estimation algorithms for 3GPP LTE downlink", Second International Conference on Ubiquitous and Future Networks (ICUFN), pp. 218-221, 2010.
- 12. Johanna Ketonen, Markku Juntti, Jari Ylioinas, Joseph R. Cavallaro, "Implementation of LS, MMSE and SAGE channel estimators for mobile MIMO-OFDM", Conference Record of the Forty Sixth Asilomar Conference on Signals, Systems and Computers (ASILOMAR), pp. 1092-1096, 2012.
- 13. Meilong Jiang, Guosen Yue, Narayan Prasad, Sampath Rangarajan, "Enhanced DFT-Based Channel Estimation for LTE Uplink", Vehicular Technology Conference (VTC Spring), IEEE 75th,pp. 1-5,2012.
- 14. Fanghua Weng, Changchuan Yin, Tao Luo, "Channel estimation for the downlink of 3GPP-LTE systems", 2nd IEEE International Conference on Network Infrastructure and Digital Content, pp. 1042-1046, 2010.
- 15. Won Jun Hwang, Jun Hee Jang, Hyung Jin Choi, "An enhanced channel estimation method for MU-MIMO based LTE-Advanced system", The 17th Asia Pacific Conference on Communications, pp. 163-167, 2011.

- 16. Wei Guo, Guojin Li, "Study on channel estimation of Long Term Evolution", IEEE 3rd International Conference on Communication Software and Networks (ICCSN), pp.367 369, 2011.
- 17. Manda Rajarao, R V Raja Kumar, Divya Madhuri, Madhavi Latha, "Efficient channel estimation technique for LTE air interface", Asia Pacific Conference on Postgraduate Research in microelectronics and electronics", pp. 214-219, 2012
- 18. Sung-Hyuk Shin, Chang-Soo Koo, D. Grieco, A. Zeira, "Pathloss-aided closed loop transmit power control for 3G UTRA TDD", The 57th IEEE Semiannual Vehicular Technology Conference, VTC 2003-Spring, Vol. 4, pp. 2226-2230, 2003.
- 19. Bilal Muhammad, Abbas Mohammed, "Uplink closed loop power control for LTE system", 6th International Conference on Emerging Technologies (ICET), pp. 88-93, 2010.
- 20. Manda Rajarao, R V Raja Kumar, Divya Madhuri, Madhavi Latha, "Efficient channel estimation technique for LTE air interface", Asia Pacific Conference on Postgraduate Research in microelectronics and electronics, pp. 214-219, 2012.
- 21. Sung-Hyuk Shin, Chang-Soo Koo, D. Grieco, A. Zeira, "Pathloss-aided closed loop transmit power control for 3G UTRA TDD", The 57th IEEE Semiannual Vehicular Technology Conference, VTC 2003-Spring, Vol. 4,pp. 2226-2230,2003.
- 22. Bilal Muhammad, Abbas Mohammad, "Uplink closed loop power control for LTE system", 6th International Conference on Emerging Technologies (ICET), pp. 88-93, 2010.
- 23. Chieh-Ho Lee, Chung-Ju Chang, "Performance analysis of a truncated closed-loop power-control scheme for DS/CDMA cellular systems", IEEE Transactions on Vehicular Technology", Vol. 53, pp. 1149-1159, 2004.

- 24. Hamed Saghaei, Abbas Ali Lotfi Neyestanak, "Variable Step Closed-Loop Power Control in Cellular Wireless CDMA Systems under Multipath Fading", IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, pp. 157-160, 2007.
- 25. R. Mullner, C. F. Ball, "Contrasting Open-Loop and Closed-Loop Power Control Performance in UTRAN LTE Uplink by UE Trace analysis", IEEE International Conference on Communications, pp. 1-6, 2009.
- 26. Qinqin Chen, Hui Zhao, Lin Li, Hang Long, Jianquan Wang, Xiaoyue Hou, "A Closed-Loop UL Power Control Scheme for Interference Mitigation in Dynamic TD-LTE Systems", IEEE 81st Vehicular Technology Conference (VTC Spring), pp. 1 5, 2015.
- 27. Arne Simonsson, Anders Furuskar, "Uplink Power Control in LTE Overview and Performance, Subtitle: Principles and Benefits of Utilizing rather than Compensating for SINR Variations", Vehicular Technology Conference, VTC 2008-Fall. IEEE 68th, pp. 1-5, 2008.
- 28. K L V Sai Prakash Sakuru, Mushunuri Visali, "Power control based resource allocation in LTE uplinks", International Conference on Communications and Signal Processing (ICCSP), pp. 0579-0582, 2015.
- 29. E. M. Al-Ardi, R. M. Shubair, M. E. Al-Mualla, "Performance evaluation of the LMS adaptive beamforming algorithm used in smart antenna systems", IEEE 46th Midwest Symposium on Circuits and Systems, Vol. 1, pp. 432-435, 2003.
- 30. Ahmed El Naggary, Said El Khamy, "LTE-A edge users improvement using soft fractional frequency reuse and adaptive beam forming technique", Middle East Conference on Antennas and Propagation (MECAP), pp. 1-5, 2012.

- 31. Sen Wang, Dacheng Yang, et el., "A Novel Single-/Multi-Layer Adaptive Scheme for Eigen Based Beam forming in TD-LTE Downlink", Vehicular Technology Conference (VTC Fall), 2011 IEEE, pp. 1 5,2011.
- 32. MathWorks DSP System Toolbox, http://www.mathworks.com/products/dsp-system.
- 33. MathWorks Communications System Toolbox, http://www.mathworks.com/products/communications.
- 34. 3GPP (2009) Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and Channel Coding. TS 36.212.
- 35. Y.S. Cho, J.K. Kim, W.Y. Yang, C.G. Kang, MIMO-OFDM Wireless Communications with MATLAB, John Wiley and Sons (Asia) Pte Ltd, 2010.
- 36. A. Ghosh, R. Ratasuk, Essentials of LTE and LTE-A, Cambridge University Press, 2011.

THANK YOU